
Spatial Hotelling Problem with Sequential Selection
written by Cyrus Maz, November 3rd, 2020

Problem Description

Three players A, B, C play the following game. First, A picks a real number between 0 and 1 (both inclusive),
then B picks a number in the same range (different from A’s choice) and finally C picks a number, also in the
same range, (different from the two chosen numbers). We then pick a number in the range uniformly randomly.
Whoever’s number is closest to this random number wins the game. Assume that A, B and C all play optimally
and their sole goal is to maximise their chances of winning. Also assume that if one of them has several optimal
choices, then that player will randomly pick one of the optimal choices.

1. If A chooses 0, then what is the best choice for B?

2. What is the best choice for A?

3. Can you write a program to figure out the best choice for the first player when the game is played among
four players?

Notation

A∗: A’s choice, B∗: B’s choice , C∗: C’s choice

1 If A chooses 0, then what is the best choice for B?

The best choice for B is 2/3.
Proof by contradiction:

If B chooses 2/3, then C∗ ∼ Uniform
(

0, 2/3
)

.

Then P (B winning|B∗ = 2/3, C∗)=1/3 + (2/3− C∗)/2 and therefore,
E[P (B winning|B∗ = 2/3, C∗)] = 1/3 + 1/3− E[C∗]/2+ = 2/3− 1/6 = 1/2
Now, for a contradiction, suppose the optimal choice for B is 2/3 + α

Case 1: α ∈
(

0, 1/3
]

Then C∗ ∼ Uniform
(

0, 2/3 + α
)

and P (B winning|B∗ = 2/3 + α)=1/3− α+ (2/3 + α− C∗)/2.

Therefore,

E[P (B winning|B∗ = 2/3 + α,C∗)] = 1/3− α+ (2/3 + α− E[C∗])/2

= 1/3 + 1/3− α+ α/2− E[C∗]/2

= 2/3− α/2− (2/3 + α)/4

= 2/3− 1/6− 3/4α

= 1/2− 3/4α < 1/2 = E[P (B winning|B∗ = 2/3, C∗)]

(1)

where the final inequality holds because α > 0.

Case 2: α ∈
(
− 2/3, 0

)
Then C∗ = 2/3 + α+ ε for some very small ε > 0 and

E[P (B winning|B∗ = 2/3 + α,C∗)] = P (B winning|B∗ = 2/3 + α)

= B∗/2 + (C∗ −B∗)/2
= C∗/2

= (2/3 + α+ ε)/2

= 1/3 + α/2 + ε/2

< 1/2 = E[P (B winning|B∗ = 2/3, C∗)]

(2)

Where the finally inequality holds because α ∈
(
− 2/3, 0

)
.

Since other values of α would make B∗ fall outside of the unit interval [0, 1] we conclude that the optimal choice
for B is 2/3.

Note: as a sanity check, I used the algorithm outlined in my solution to question 3 to solve for the optimal choice
for player B, given that A plays 0 in a three player setting, and it yielded the same answer as the one shown here.

�

CyrusMaz.com Page 1 of 12

http://www.cyrusmaz.com

2 What is the best choice for A?

The best choice for A is drawing randomly from a (discrete) Unifrom{1/4, 3/4} distribution.
Proof:
First, by contradiction we show that choosing 1/2 is sub-optimal for A.
Suppose A chooses 1/2. Then B must choose from the following set: [0, 1/2) ∪ (1/2, 1].
Then the optimal choices for B and C are 1/2± ε and 1/2∓ ε for a very small ε > 0, and:

E[P (A winning|A∗ = 1/2)] = P (A winning|A∗ = 1/2) = ε

Then, considering the scenario in question 1, we note that if A∗ = 0, then B∗ = 2/3, and subsequently C∗ ∼
Uniform

(
0, 2/3

)
. Therefore, P (A winning|A∗ = 0) = C∗/2 and thus

E[P (A winning|A∗ = 0)] = E[C∗]/2

= 1/6

> ε = E[P (A winning|A∗ = 1/2)]

(3)

Hence, 1/2 is a sub-optimal choice for A.
Without loss of generality, assume that A∗ < 1/2. Then,

i. if B∗ ≤ 1/2 and A∗ > B∗ then C∗ = A∗ + ε, for a very small ε > 0 and
P (B winning|A∗, B∗) = B∗ + (A∗ −B∗)/2 = (B∗ +A∗)/2
P (A winning|A∗, B∗) = (B∗ −A∗)/2 + ε/2

ii. if B∗ ≤ 1/2 and A∗ < B∗ then C∗ = B∗ + ε, for a very small ε > 0 and
P (B winning|A∗, B∗) = (B∗ −A∗)/2 + ε/2
P (A winning|A∗, B∗) = A∗ + (B∗ −A∗)/2 = (B∗ +A∗)/2

iii. if B∗ > 1/2 and max(A∗, (B∗ −A∗)/2, 1−B∗) = 1−B∗ then C∗ = B∗ + ε for a very small ε > 0 and
P (B winning|A∗, B∗) = (B∗ −A∗)/2 + ε/2
P (A winning|A∗, B∗) = A∗ + (B∗ −A∗)/2 = (B∗ +A∗)/2

iv. if B∗ > 1/2 and max(A∗, (B∗ −A∗)/2, 1−B∗) = A∗ then C∗ = A∗ − ε for a very small ε > 0 and
P (B winning|A∗, B∗) = (1−B∗) + (B∗ −A∗)/2 = 1− (B∗ +A∗)/2
P (A winning|A∗, B∗) = ε/2 + (B∗ −A∗)/2

v. if B∗ > 1/2 and max(A∗, (B∗ −A∗)/2, 1−B∗) = (B∗ −A∗)/2 then C∗ ∼ Uniform(A∗, B∗),
P (B winning|A∗, B∗) = (1−B∗) + (B∗ − C∗)/2 = 1− 1/2B∗ − C∗/2; and thus,
E[P (B winning|A∗, B∗)] = 1− 1/2B∗ + E[C∗]/2 = 1− 1/2B∗ − (A∗ +B∗)/4 = 1− 3/4B∗ −A∗/4
P (A winning|A∗, B∗) = A∗ + (C∗ −A∗)/2 = A∗/2 + C∗/2; and thus,
E[P (A winning|A∗, B∗)] = A∗/2 + (B∗ +A∗)/4

Let us revise the enumerated list above into explicit equations for expected conditional probabilities of A and B
winning.

E[P (B winning|A∗, B∗)] =



(B∗ +A∗)/2 + ε/2 if B∗ ≤ 1/2 and A∗ > B∗

(B∗ −A∗)/2 + ε/2 if B∗ ≤ 1/2 and A∗ < B∗

(B∗ −A∗)/2 + ε/2 if B∗ > 1/2 and max(A∗, (B∗ −A∗)/2, 1−B∗) = 1−B∗

(B∗ +A∗)/2 + ε/2 if B∗ > 1/2 and max(A∗, (B∗ −A∗)/2, 1−B∗) = A∗

1− 3/4B∗ −A∗/4 + ε/2 if B∗ > 1/2 and max(A∗, (B∗ −A∗)/2, 1−B∗) = (B∗ −A∗)/2

CyrusMaz.com Page 2 of 12

http://www.cyrusmaz.com

E[P (A winning|A∗, B∗)] =



(B∗ −A∗)/2 + ε/2 if B∗ ≤ 1/2 and A∗ > B∗

(B∗ +A∗)/2 + ε/2 if B∗ ≤ 1/2 and A∗ < B∗

(B∗ +A∗)/2 + ε/2 if B∗ > 1/2 and max(A∗, (B∗ −A∗)/2, 1−B∗) = 1−B∗

(B∗ −A∗)/2 + ε/2 if B∗ > 1/2 and max(A∗, (B∗ −A∗)/2, 1−B∗) = A∗

A∗/2 + (B∗ +A∗)/4 + ε/2 if B∗ > 1/2 and max(A∗, (B∗ −A∗)/2, 1−B∗) = (B∗ −A∗)/2

We now have everything we need to find the optimal choice for A numerically. Let

B̃ =
{

(a, b) : b = argmax
b

E[P (B winning|A∗ = a,B∗ = b)], a ∈ [0, 1/2)
}

and let

Ã =
{
a : a = argmax

a
E[P (A winning|A∗ = a,B∗ = b)], (a, b) ∈ B̃

}
Then Ã is the set of optimal plays by A in the interval [0, 1/2). We will approximate B̃ by grid search over

(A∗ × B∗) ∈ [0, 1/2] × [0, 1]. Next, we will calculate (approximately) Ã by searching through the approximation of
B̃.

Figure 1: (Question 2) Left: the surface of the expectation of the conditional probability of B winning represented
as a heatmap. Right: Approximation of B̃ computed by grid search.

Using the Python code included in Appendix A, with a grid step size of 0.001, we find that Ã = {0.25} Then, by
symmetry, 0.75 is also an optimal choice for A. Thus, we have that the optimal choice for A is drawing randomly
from a (discrete) Unifrom{1/4, 3/4} distribution.

Note: as a sanity check, I used the algorithm outlined in my solution to question 3 to solve for the optimal
choice for player A in a three player setting, and it yielded the same answer as the one calculated here. Output from
question 3’s algorithm used to solve this question is included at the end of Appendix B.

CyrusMaz.com Page 3 of 12

http://www.cyrusmaz.com

3 Can you write a program to figure out the best choice for the first
player when the game is played among four players?

3.1 Caveats

We must first note that since no player may choose a number already chosen by any of the previous players,
the space of potential choices for all but the first player are non-compact sets. In a strictly mathematical sense,
this makes “optimal” choices to not exist in certain cases. To demonstrate this subtle point, consider the following
scenario in a two player setting: player A chooses 1/3; then the choice for player B that maximizes their probability
of winning is 1/3 + ε, for a very small ε > 0 which yields P (B winning|A∗ = 1/3) = 1 − (1/3 + ε) = 2/3 − ε. Note
that

lim
ε→0+

P (B winning|A∗ = 1/3) = 2/3

in a monotonically increasing manner, and thus P (B winning|A∗ = 1/3) cannot be maximized over (1/3, 1].

To circumvent this mathematical nuance, we will impose a minimum acceptable value for ε. Let ε0 denote this
minimum acceptable value for ε.

Furthermore, to solve the puzzle algorithmically, we will approximate the exact solution, by discretizing [0, 1] into
M equally-lengthed intervals, thereby restricting the set of possible choices to {i/(M+1) : i = 0, 1, ...,M−1,M,M+1}
for some large integer M . In this discrete setting, ε0 must be ≤ 1/M .

3.2 General Procedure

Let N be the number of players. Let M be the number of equally spaced intervals [0, 1] is discretized into.
Consequently, the set of possible choices is restricted {i/(M + 1) : i = 0, 1, ...,M − 1,M,M + 1}. Let ε0 = 1/M .
Start with every possible (optimal and non-optimal) sequence of choices by the first N − 1 players. Then for each
sequence, we find the optimal choice for the Nth player. Algorithm 1, optimal path calculator(sequence), outlines
the procedure for this task. A sequence of one choices for the first N − 1 players followed by the corresponding
optimal choice for the N-th player (conditional on the first N − 1 choices), shall be referred to as a path henceforth.
A set of paths such that an initial sequence (of some length) is shared amongst the paths shall be referred to as a
group henceforth. The set of all groups shall be referred to as the path-space henceforth. We will regroup and prune
the path-space, in essence optimizing the choice of each player, according to what the subsequent player(s) will play
conditional on the choice of the player in question as well the choice(s) of any preceding player(s). We repeat this
procedure iteratively starting with the Nth player and working backwards until we find the optimum choice(s) for
the first player. The pseudocode in Algorithm 2, backward solver(M,N), describes this procedure in more detail.
Working Python code as well as example output for various values of M are included in Appendix B.

Note that in the code in the appendix, we restrict the path-space to those whose choice of player A is in
[0, 1/2] ∩ {i/(M + 1) : i = 0, 1, ...,M − 1,M,M + 1}. This is to save on computational cost and is justified by the
fact that if some value a∗ is optimal for player A on [0, 1/2], then by symmetry, 1− a∗ is also optimal.

3.3 Results & Discussion

Running the Python script with N = 4 and M = 100, 127, 200 gives optimal choices for A approximately equal
to 0.16 and 0.83. It is plausible that the exact answer is 1/6 and 5/6 as the estimates are close to these fractions.

Figure 2 summarizes these results for N = 4 and M = 100, 127, 200. The plots on the left show the expected
probability of A winning for each A∗ ∈ [0, 1/2] ∩ {i/(M + 1) : i = 0, 1, ...,M − 1,M,M + 1}. The plots on the right
show the possible sequence of optimal choices by each player. (Note that in our script, whenever D has an interval
of optimal choices available to them, we choose the middle point for accuracy and savings on computational cost.
More on this in section 3.4.)

Discretizing the interval [0, 1] results in this solution being an approximation. I believe that for sufficiently large
M , the solution produced by this algorithm can be arbitrarily close to the exact solution. However, the computational
cost for large choices of M and N are significant. For this reason I was unable to arrive at an answer with M > 200,
in the four player setting.

CyrusMaz.com Page 4 of 12

http://www.cyrusmaz.com

3.3.1 Plots

(a)(i) (b)(ii)

(c)(i) (d)(ii)

h
(e)(i) (f)(ii)

Figure 2: The general shape of the mapping [0, 1/2] 7→ E[P (A winning|A∗)] is consistent for all values of M tested.
Interestingly the mapping appears to be less smooth for M=200 than M=100 or 127.

CyrusMaz.com Page 5 of 12

http://www.cyrusmaz.com

3.4 Key Algorithms

Algorithm 1: optimal path calculator(sequence)

Let ε0 denote the minimum acceptable ε
Let {x1, x2, ..., xN−1} denote the sequence of sorted choices of the first N − 1 players
Let d = {x1,max(xj − xj−1)/2, 1− xN−1 : j = 1, ..., N}
Let d∗ = max(d)
Let p = [] be an empty list to be filled with optimal choices by the Nth player
for each j ∈ {2, ..., N − 1} do
if (xj − xj−1)/2 = d∗ then

append (xj + xj−1)/2 to p
end if

end for
if x1 = d∗ then

append x1 − ε0 to p
end if
if xN−1 = d∗ then

append xN−1 + ε0 to p
end ifReturn p

Algorithm 2: backward solver(M,N)

Find all permutations of possible (optimal and non-optimal) plays by the first N-1 players
For each permutation, find the optimum play(s) by the N-th player
The sequence of each permutation, and the corresponding optimal choices by the N-th player constitutes a group
Set k = N
while k > 0 do

(find the optimal paths for the (k-1)th player)
Average
for each group in the path-space do

compute the average payoffs of all paths in the group
end for
Regroup
if k − 2 > 0 then

Regroup: One group for each unique initial permutation sequence of length k − 2 i.e. the first k − 2
permutation sequence is shared among members of each group

else
Regroup: Take the union of all remaining groups so that there is only one group in the path-space

end if
Optimize
for each group in the path-space do

Discard every path that is sub-optimal (in terms of the group payoff average) for the (k-1)th player
end for

end while
Return every unique play by the first player in the remaining paths

It should be noted that optimal path calculator(sequence) does not explicitly account for the different choices the
final player can make when an interval of optimal choices is available to them. This is justified by the fact that
when estimating the expected probabilities of winning for the previous players, using the midpoint of an interval
that is optimal for the final player as their choice, rather than averaging the probabilities of winning corresponding
to multiple discrete points on the interval, as we do for the preceding players, has two advantages: 1. more accurate
estimation for the expected conditional probabilities of player N −1 winning (this boost of accuracy is preserved and
transferred backward at each iteration of backward solver(M,N)), and 2. significant savings on computational cost.
Furthermore, when multiple optimal intervals are available to the final player the algorithm records the midpoint of
each interval as an optimal choice; and when singular optimal choices are available, optimal path calculator(sequence)
does in fact record each one as an optimal choice.

CyrusMaz.com Page 6 of 12

http://www.cyrusmaz.com

Appendix A Code for Question 2 (hotelling q2.py W)

1 import itertools

2

3 def P_B_wins(A,B):

4 if (B<=1/2) and (A>B):

5 return (B+A)/2

6 if (B<=1/2) and (A<B):

7 return (B-A)/2

8 if (B>1/2) and (max(A,1-B,(B-A)/2)==1-B):

9 return (B-A)/2

10 if (B>1/2) and (max(A,1-B,(B-A)/2)==A):

11 return 1-(B+A)/2

12 if (B>1/2) and (max(A,1-B,(B-A)/2)==(B-A)/2):

13 return 1-3/4*B-A/4

14 if (B==A): return 0

15

16 def P_A_wins(A,B):

17 if (B<=1/2) and (A>B):

18 return (B-A)/2

19 if (B<=1/2) and (A<B):

20 return (B+A)/2

21 if (B>1/2) and (max(A,1-B,(B-A)/2)==1-B):

22 return (B-A)/2

23 if (B>1/2) and (max(A,1-B,(B-A)/2)==A):

24 return (B-A)/2

25 if (B>1/2) and (max(A,1-B,(B-A)/2)==(B-A)/2):

26 return A/2+(B+A)/4

27 if (B==A): return 0

28

29 mesh_width = 1000

30 A_vals = [x/mesh_width for x in range(int(mesh_width/2)+1)]

31 B_vals = [x/mesh_width for x in range(int(mesh_width)+1)]

32 grid = list(itertools.product(A_vals, B_vals))

33

34 Tilde_B = []

35 for A in A_vals:

36 val=[P_B_wins(A,B) for B in B_vals]

37 max_val = max(val)

38 max_index = [i for i, j in enumerate(val) if j == max_val]

39 Tilde_B.append(B_vals[max_index[0]])

40

41 Tilde_A = [dict(A=a,P_A_wins=P_A_wins(a,b)) for a,b in zip(A_vals, Tilde_B)]

42 seq = [p['P_A_wins'] for p in Tilde_A]

43 max_seq=max(seq)

44 Tilde_A = list(filter(lambda x: x['P_A_wins']==max_seq, Tilde_A))

45 print(Tilde_A)

46

47 # [{'A': 0.25, 'P_A_wins': 0.37525}]

CyrusMaz.com Page 7 of 12

https://github.com/cyrusmaz/cyrusmaz.github.io/blob/master/files/hotelling/hotelling_q2.py
http://www.cyrusmaz.com

Appendix B Code for Question 3 (hotelling q3.py W)

1 from copy import deepcopy

2 from itertools import permutations, groupby

3 from functools import reduce

4 from operator import add

5 from collections import Counter

6 from math import isclose

7 import json

8

9 # Given a path, calculate the probability of each player winning

10 # INPUT:

11 # path: a path of the form {'a':0.2, 'b': 0.5, 'c':0.8,... }

12 # OUTPUT: the payoff for each player, where payoff is defined

13 # as the probability of the player winning the game

14 def payoff_calculator(path):

15 sorted_keys=sorted(path, key=path.get)

16 output=dict()

17 for k in range(len(sorted_keys)):

18

19 if k==0:

20 lowbo=0

21 upbo=(path[sorted_keys[k]]+path[sorted_keys[k+1]])/2

22 elif k==len(sorted_keys)-1:

23 lowbo=(path[sorted_keys[k-1]]+path[sorted_keys[k]])/2

24 upbo=1

25 else:

26 lowbo=(path[sorted_keys[k-1]]+path[sorted_keys[k]])/2

27 upbo=(path[sorted_keys[k]]+path[sorted_keys[k+1]])/2

28 output[sorted_keys[k]]=upbo-lowbo

29 return output

30

31 # generate every possible sequence of choices by the first N-1 players

32 # INPUTS:

33 # M: determines the choices for players are {i/(M+1) : i=0,1,...,M-1,M,M+1}

34 # N: the number of players

35 # OUTPUT: all possible permutations of choices to play by the

36 # first N-1 players

37 def play_generator(M, N):

38 discretized = [x/(M) for x in range(0,M+1)]

39 perms = list(permutations(discretized, N-1))

40 output = []

41 for perm in perms:

42 processed_perm = {alphabet[i]:perm[i] for i in range(N-1)}

43 output.append(processed_perm)

44 return output

45

46 ### ALGORITHM 1:

47 # compute the optimal choice for the N-th player, given a sequence of choices by the first

48 # N-1 players

49 # INPUTS:

50 # path: a path of N-1 plays by the first N-1 players, {'a':0.2, 'b': 0.5, ... }

51 # OUTPUT: a dictionary consisting of two key/value pairs:

52 # 'path_group': a list of dicitonaries of paths that are equal to the input

53 # path in the first N-1 plays, and have optimal plays by the Nth player

54 # 'payoff_group': a list of dictionaries of payoffs corresponding to the respective path

55 #. in the path_group list

CyrusMaz.com Page 8 of 12

https://github.com/cyrusmaz/cyrusmaz.github.io/blob/master/files/hotelling/hotelling_q3.py
http://www.cyrusmaz.com

56 def optimal_path_calculator(path):

57 letter = alphabet[len(path)]

58 vals = list(path.values())

59 vals.sort()

60 intervals = []

61 max_len = 0

62 for i in range(len(vals)+1):

63 if i==0: lobo=0

64 else: lobo=vals[i-1]

65

66 if i==(len(vals)): upbo=1

67 else: upbo=vals[i]

68

69 if not ((i==0) or (i==(len(vals)))):

70 length=(upbo-lobo)/2

71 elif ((i==0) or (i==(len(vals)))):

72 length=upbo-lobo

73

74 if i==0:

75 lobo='zero'

76 elif i==len(vals):

77 upbo='one'

78

79 intervals.append([lobo, upbo, length])

80 if length>max_len: max_len=length

81

82 intervals=list(filter(lambda x: isclose(x[2],max_len,abs_tol=r), intervals))

83

84 path_list = []

85 for interval in intervals:

86 if interval[0]=='zero':

87 path_list.append(min(vals)-e)

88

89 elif interval[1]=='one':

90 path_list.append(max(vals)+e)

91 else:

92 path_list.append((interval[0] + interval[1])/2)

93

94 path_group=[]

95 payoff_group=[]

96 for n in path_list:

97 newdict = deepcopy(path)

98 newdict[letter]=n

99 path_group.append(newdict)

100 payoff_group.append(payoff_calculator(newdict))

101

102 return {'path_group':path_group, 'payoff_group':payoff_group}

103

104 # compute the average payoff for all paths in the group

105 def payoff_average_calculator(group):

106 payoff_group = group['payoff_group']

107 payoff_average = dict(reduce(add, map(Counter, payoff_group)))

108 payoff_average = {k:v/len(payoff_group) for k,v in payoff_average.items()}

109 group['payoff_average'] = [payoff_average]*len(payoff_group)

110 return group

111

112 # regroup path_space such that the first k-2 in each group are identical

CyrusMaz.com Page 9 of 12

http://www.cyrusmaz.com

113 def regroup(path_space, k):

114 path_group_agg = []

115 payoff_group_agg = []

116 payoff_average_agg = []

117

118 for e in path_space:

119 for path, payoff_group, payoff_average in zip(

120 e['path_group'],

121 e['payoff_group'],

122 e['payoff_average']

123):

124 path_group_agg.append(path)

125 payoff_group_agg.append(payoff_group)

126 payoff_average_agg.append(payoff_average)

127

128 trip = zip(path_group_agg, payoff_group_agg, payoff_average_agg)

129 l=alphabet[0:k-2]

130 print('regrouping such that choices for ({}) in each group are equal'.format(l))

131 regrouped_raw=[

132 [*j] for i, j in

133 groupby(

134 sorted(trip, key=lambda x: [x[0][i] for i in l]),

135 key=lambda x: [x[0][i] for i in l])

136]

137

138 regrouped = []

139 for group in regrouped_raw:

140 path_group = []

141 payoff_group = []

142 payoff_average = []

143 for path in group:

144 path_group.append(path[0])

145 payoff_group.append(path[1])

146 payoff_average.append(path[2])

147 d=dict(path_group=path_group,

148 payoff_group=payoff_group,

149 payoff_average=payoff_average)

150 regrouped.append(d)

151 return regrouped

152

153 # for each group in path_space, discard every path that is suboptimal for player k-1

154 def optimize_groups(path_space, k):

155 letter = alphabet[k-2]

156 print('optimizing {}'.format(letter.upper()))

157 optimized = []

158

159 for i in range(len(path_space)):

160 group = deepcopy(path_space[i])

161 seq=[g[letter] for g in group['payoff_average']]

162 max_pay = max(seq)

163 filtered_group = list(filter(

164 lambda x: isclose(x[2][letter],max_pay,abs_tol=r),

165 zip(group['path_group'], group['payoff_group'],group['payoff_average'])

166))

167 filtered_group = list(zip(*filtered_group))

168 optimized.append(

169 {'path_group': list(filtered_group[0]), 'payoff_group': list(filtered_group[1])})

CyrusMaz.com Page 10 of 12

http://www.cyrusmaz.com

170 return optimized

171

172 # recursively carry out the while loop in Algorithm 1

173 def recursive_solver(path_space, k):

174 print("k={}".format(k))

175 path_space_withaverage = [payoff_average_calculator(o) for o in path_space]

176 path_space_regrouped = regroup(path_space_withaverage, k)

177 path_space_optimized_by_group = optimize_groups(path_space_regrouped, k)

178 if k==2:

179 return [payoff_average_calculator(o) for o in path_space_optimized_by_group]

180 else:

181 k-=1

182 return recursive_solver(path_space_optimized_by_group,k)

183

184 ### ALGORITHM 2:

185 # wrapper for recursive_solver

186 def backwards_solver(M,N, question_1=False, write=False):

187 print('M={}'.format(M))

188 print('N={}'.format(N))

189 path_space = play_generator(M,N)

190

191 if question_1 is True:

192 path_space = list(filter(lambda x: x['a']==0, path_space))

193 else:

194 path_space = list(filter(lambda x: x['a']<=1/2, path_space))

195

196 path_space = [optimal_path_calculator(play) for play in path_space]

197 optimal_paths = recursive_solver(path_space,N)

198

199 path_group=optimal_paths[0]['path_group']

200 average_payoff = optimal_paths[0]['payoff_average'][0]

201

202 if question_1 is False:

203 A = list(set([x['a'] for x in path_group]))

204 print('optimal choice(s) for A: {}'.format(A))

205 print('average payoff: {}'.format(average_payoff))

206 print('optimal paths: {}'.format(path_group))

207

208 elif question_1 is True:

209 B = list(set([x['b'] for x in path_group]))

210 print('optimal choice(s) for B: {}'.format(B))

211 print('average payoff: {}'.format(average_payoff))

212 print('optimal paths: {}'.format(path_group))

213

214 if write is True:

215 with open('optimal_paths_M{}_N{}_r{}.txt'.format(M,N,r), 'w') as filehandle:

216 json.dump(optimal_paths, filehandle)

217

218 ##

219 # e: the minimum allowable epsilon

220 # r: absolute tolerance when comparing floating points

221 e = 1/100000

222 r = e/10

223 alphabet = ['a', 'b', 'c', 'd']

224 ##

225 # QUESTION 3: Optimal choie for player A in four player setting.

226 backwards_solver(M=100, N=4,question_1=False, write=False)

CyrusMaz.com Page 11 of 12

http://www.cyrusmaz.com

227 # optimal choice(s) for A: [0.16]

228 # average payoff:

229 # {'a': 0.2875, 'd': 0.16999999999999998, 'c': 0.2549999999999999, 'b': 0.2875000000000001}

230 # optimal paths: [{'a': 0.16, 'b': 0.84, 'c': 0.5, 'd': 0.33},

231 # {'a': 0.16, 'b': 0.84, 'c': 0.5, 'd': 0.6699999999999999}]

232

233 # backwards_solver(M=127,N=4,question_1=False, write=False)

234 # optimal choice(s) for A: [0.16535433070866143]

235 # average payoff:

236 # {'a': 0.29035433070866146,

237 # 'c': 0.24999999999999992,

238 # 'd': 0.1692913385826772,

239 # 'b': 0.29035433070866146}

240 # optimal paths: [

241 # {'a': 0.16535433070866143,

242 # 'b': 0.8346456692913385,

243 # 'c': 0.49606299212598426,

244 # 'd': 0.6653543307086613},

245 # {'a': 0.16535433070866143,

246 # 'b': 0.8346456692913385,

247 # 'c': 0.5039370078740157,

248 # 'd': 0.3346456692913386}]

249

250 # backwards_solver(M=200,N=4,question_1=False, write=False)

251 # optimal choice(s) for A: [0.165]

252 # average payoff: {'a': 0.290625, 'd': 0.16749999999999998, 'c': 0.25125, 'b': 0.290625}

253 # optimal paths: [{'a': 0.165, 'b': 0.835, 'c': 0.5, 'd': 0.3325},

254 # {'a': 0.165, 'b': 0.835, 'c': 0.5, 'd': 0.6675}]

255

256 ##

257 # QUESTION 1: Optimal choice for player B when A plays 0.

258 # backwards_solver(M=100,N=3,question_1=True, write=False)

259 # optimal choice(s) for B: [0.67]

260 # average payoff: {'a': 0.1675, 'c': 0.3350000000000001, 'b': 0.49749999999999994}

261 # optimal paths: [{'a': 0.0, 'b': 0.67, 'c': 0.335}]

262

263 ##

264 # QUESTION 2: Optimal choie for player A in three player setting.

265 # backwards_solver(M=100,N=3,question_1=False, write=False)

266 # optimal choice(s) for A: [0.25]

267 # average payoff: {'c': 0.24999666666666664, 'a': 0.3750016666666667, 'b': 0.3750016666666667}

268 # optimal paths: [{'a': 0.25, 'b': 0.75, 'c': 0.24999},

269 # {'a': 0.25, 'b': 0.75, 'c': 0.5},

270 # {'a': 0.25, 'b': 0.75, 'c': 0.75001}]

CyrusMaz.com Page 12 of 12

http://www.cyrusmaz.com

	If A chooses 0, then what is the best choice for B?
	What is the best choice for A?
	Can you write a program to figure out the best choice for the first player when the game is played among four players?
	Caveats
	General Procedure
	Results & Discussion
	Plots

	Key Algorithms

	Appendix Code for Question 2 (hotelling_q2.py 87)
	Appendix Code for Question 3 (hotelling_q3.py 87)

