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1.1.4
A σ-field F is said to be countably generated if there is a countable collection C ⊂ F so that
σ(C) = F . Show that Rd is countably generated.

Since the rationals, Q are dense in the real line, R, it follows that any x ∈ R can be represented as the limit
of a sequence {qn}n∈N where qn ∈ Q ∀n.

Let C = {(a, b) : −∞ ≤ a < b ≤ ∞; a, b ∈ Q}. Any open set in R may be constructed as a countable union
of the elements in C

Let R be the Borel sets on R. By definition, R is the smallest sigma-algebra containing the open sets.
Therefore, C ⊂ R since every element of C is an open set. Then,

C ⊂ R =⇒ σ(C) ⊂ σ(R) = R

By the definiton of sigma-algebras and C, we have that every open set is contained in σ(C). By the definition
of Borel sets, R is the smallest sigma-algebra containing the open sets. Therefore R ⊂ σ(C).

Thus, R = σ(C).

To extend the proof to Rd, we use Cd = {(a1, b2) × ... × (ad, bd) : −∞ ≤ ai < bi ≤ ∞; ai, bi ∈ Q∀i}. Note
that Cd is a countable set.

Lemma 2: For any open set G ⊂ Rd, there exists a countable collection {Gi} of open sets such that
G =

⋃∞
i=1Gi

Proof of Lemma 2: Since G is open, for every x ∈ G there exists an open ball centred around x contained in
G. Within this open ball, there exists an open rectangle with rational endpoints containing x. We will denote
this box by Cd

x and note that Cd
x ∈ Cd. Furthermore, G =

⋃
x∈G

Cd
x ⊂ Cd.⋃

x∈G
Cd
x is an uncountable union of the elements of a countable set Cd. Therefore, G =

⋃
x∈G

Cd
x may be

re-indexed as a countable union, for example G =
⋃
i=1Gi where Gi ∈ Cd. �

The result for Rd follows from the R case and Lemma 2.
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1.2.5

1.2.3
Show that a distribution function has at most countably many discontinuities.

This a consequence of the monotonicity of the distribution function. Let F be a distribution function. And let
D be the set of points at which F is discontinuous. For each d ∈ D, F (d−) = lim

x↑d
F (x) < lim

x↓d
F (x) = F (d+).

Therefore for all d ∈ D there exists a unique rational number qd such that F (d−) < qd < F (d+). The
collection {qd}d∈D is consists of but D is uncountable. This is a contradiction and therefore a distribution
function cannot have uncountably many discontinuities.

�

1.2.5
Suppose X has continuous density f, P (α ≤ X ≤ β) = 1 and g is a function that is strictly increas-
ing and differentiable on (α, β). Then g(X) has density f(g−1(y))/g′(g−1(y)) for y ∈ (g(α), g(β))
and 0 otherwise.

This follows from the chain rule, the fact that

d

dx
[g−1](x) = 1

g′(g−1(x)) (1)

and the fact that g is invertible since it is strictly increasing and differentiable.

Let Fg and fg be the distribution and densitiy functions for g(X) respectively; and let FX and fX be the
distribution and density functions for X.

Fg(y) = P (g(X) ≤ y) (2)
= P (g−1(g(X)) ≤ g−1(y)) (3)
= FX(g−1(y)) (4)

Then by the definition of density,

fg(y) = d

dy
Fg(y) (5)

= d

dy
FX(g−1(y)) (6)

= fX(g−1(y)) d
dy
g−1(y) (7)

= fX(g−1(y)) 1
g′(g−1(y)) (8)

Going from (7) to (8) uses (1). �
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1.3.5

1.3.5
Show that f is lower semicontinuous if and only if x : f(x) ≤ a is closed for each a ∈ R and
conclude that semicontinuous functions are measurable.

f is l.s.c. ⇒ {x : f(x) ≤ a} is closed for all a ∈ R. Proof:

Suppose f is l.s.c., then by definition: lim inf
y→x

f(y) ≥ f(x). For an arbitrary a ∈ R let Xa = {x : f(x) ≤ a}.
Let {xn} be a sequence such that it converges to some limit η and xn ∈ Xa∀n. If we show that η ∈ Xa then
we are done.

Suppose for a contradiction that η /∈ Xa. Then f(η) > a.

lim inf
n→∞

f(xn) ≤ a since xn ∈ Xa∀n

lim inf
x→η

f(x) ≥ f(η) since by assumption f is l.s.c.

Then putting it all together, we have:

lim inf
n→∞

f(xn) ≤ a < f(η) ≤ lim inf
x→η

f(x)

This is a contradiction because lim inf
n→∞

f(xn) ≥ lim inf
x→η

f(x)

f is l.s.c. ⇐ {x : f(x) ≤ a} is closed for all a ∈ R. Proof:

Fix x and suppose Ax,ε = {y : f(y) ≤ f(x)− ε} is a closed set. Then ACx,ε = {y : f(y) > f(x)− ε} is open.

By definition, lim inf
y→x

f(y) = lim
δ→0

[inf{f(y) : y ∈ B(x, δ) \ x}] where B(x, δ) is an open ball of radius δ centered
at x.

By definition ACx,ε is an open set containing of x and so ∀ε > 0 ∃δ > 0 such that B(x, δ) ⊂ ACx,ε. Thus we can
say

lim inf
y→x

f(y) = lim
δ→0

[inf{f(y) : y ∈ B(x, δ) \ x}] (9)

= lim
ε→0

[inf{f(y) : y ∈ ACx,ε \ x}] (10)

By definition, f(y) > f(x)− ε ∀ε > 0 ∀y ∈ ACx,ε; therefore inf{f(y) : y ∈ ACx,ε \ x} > f(x)− ε

It follows that

lim inf
y→x

f(y) = lim
ε→0

[inf{f(y) : y ∈ ACx,ε \ x}] (11)

≥ f(x) (12)
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1.6.3

To show that f is measurable, we will apply Theorem 1.3.1.

Suppose f is l.s.c. and let A = (−∞, a], a ∈ R, where R is the real line.

Then f−1(A) = {x : f(x) ∈ A} is a closed a set and A ∈ R where R is the Borel sets.

f−1(A) ⊂ R because f−1(A) is closed, R is the smallest sigma-algebra generated from the open sets, and R
is closed under complements.

Next, to prove that σ({(−∞, a] : a ∈ R}) = R, it suffices to show that any open interval (p, q) may be
expressed as the countable unions and intersections of the sets {(−∞, a] : a ∈ R} and its complements.

(p, q) = (−∞, p]
⋂(⋃

i≥1
(−∞, q − 1

n
]
)

Then the result follows from exercise 1.1.4. �

1.6.3
Chebyshev’s inequality is and is not sharp.

(i) Show that for fixed 0 < b ≤ a there exists an X with EX2 = b2 for which P
(
|X| ≥ a

)
= b2/a2

X =
{
a, with probability b2/a2

0, with probability 1− b2/a2

Then P
(
|X| ≥ a

)
= P

(
|X| = a

)
= b2/a2 and EX2 = 02(1− b2/a2)+ a2(b2/a2) = b2

�

(ii) Show that if 0 < EX2 <∞ then lim
a→∞

a2P
(
|X| ≥ a

)
/EX2 = 0

a21{|X|≥a} ≤ X2 and X2 is integrable, and

a21{|X|≥a}
a→∞→ 0

Therefore, a2P
(
|X| ≥ a

)
=
∫
a21{|X|≥a}dP

a→∞→
DCT

0

Hence, a2P
(
|X| ≥ a

)
/EX2 a→∞→ 0 as desired

�
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1.6.8

1.6.5
Two nonexistent lower bounds.

(i) Show that if ε > 0, then inf{P(|X| > ε) : EX = 0,var(X) = 1} = 0

Let

Xn =


−n, with probability 1/(2n2)
n, with probability 1/(2n2)
0, with probability 1− 1/(n2)

Then EXn = (−n) 1
2n2 + (n) 1

2n2 + (0) 1
n2 = 0 and

var(Xn) = E[Xn − EXn]2 = E(Xn)2 = (−n)2 1
2n2 + (n)2 1

2n2 + (0)2(1− 1
n2 ) = 1

Note that P(|Xn| > ε) = 1/n2 ∀n > 1/ε

Since 1/n2 may be arbitrarily small, the result follows.

(ii) Show that if y ≥ 1, σ2 ∈ (0, 1), then inf{P(|X| > y) : EX = 1,var(X) = σ2} = 0

Let Yn = σXn + 1

Then EYn = E(σXn + 1) = σEXn + 1 = 1 and

var(Yn) = E[Yn − EYn]2 = EY 2
n − (EYn)2 =

(
(−σn + 1)2 1

2n2 + (σn + 1)2 1
2n2 + (0 + 1)(1 − 1

n2 )
)
− 12 =

σ2n2−2σn+1
2n2 + σ2n2+2σn+1

2n2 + (1− 1
n2 )− 1 = σ2

Similar to (i), note that P(|Yn| > ε+ 1) = 1/n2 ∀n > 1/ε

Since 1/n2 may be arbitrarily small, the result follows. �

1.6.8
Suppose the probability measure µ has µ(A) =

∫
A
f(x)dx for all A ∈ R. Use the proof technique

in Theorem 1.6.9 to show that for any g with g ≥ 0 or
∫
|g(x)|µ(dx) <∞ we have∫

g(x)µ(dx) =
∫
g(x)f(x)dx

(i) Indicator Functions: if B ∈ S and g = 1B then∫
g(x)µ(dx) =

∫
B

µ(dx) = µ(B) =
∫
B

f(x)dx =
∫
g(x)f(x)dx
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1.6.8

(ii) Simple Functions: let g =
∑n
i=1 ci1Bi , where ci ∈ R and Bi ∈ R. Using (i) and the linearity of

integration, we have: ∫
g(x)µ(dx) =

∫ n∑
i=1

ci1Biµ(dx) (13)

=
n∑
i=1

ci

∫
1Biµ(dx) (14)

=
n∑
i=1

ci

∫
Bi

µ(dx) (15)

=
n∑
i=1

ciµ(Bi) (16)

=
n∑
i=1

ci

∫
Bi

f(x)dx (17)

=
∫
Bi

n∑
i=1

cif(x)dx (18)

=
∫ n∑

i=1
ci1Bif(x)dx (19)

=
∫
g(x)f(x)dx (20)

(iii) Non-negative Functions let g ≥ 0, and gn = min
(([

2nf(x)
]
/2n
)
, n
)
, where

[
x
]

= floor(x). Then gn is
simple for all n, and gn ↑ g. By applying MCT, we have

∫
g(x)µ(dx) =

∫
lim
n→∞

gn(x)µ(dx) (21)

= lim
n→∞

∫
gn(x)µ(dx) (22)

= lim
n→∞

∫
gn(x)f(x)dx (23)

=
∫
g(x)f(x)dx (24)

(iv) Integrable Functions for integrable g, let g+ = max(g, 0) and g− = max(−g, 0); then g = g+ − g−, and∫
g(x)µ(dx) =

∫
g+(x)− g−(x)µ(dx) =

∫ (
g+(x)− g−(x)

)
f(x)dx =

∫
g(x)f(x)dx

�
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1.7.3

1.7.3
Let F , G be Stieltjes measure functions and let µ, ν be the corresponding measures on (R,R).
Show that:

(i)
∫

(a,b]{F (y)− F (a)}dG(y) = (µ× ν)
(
{(x, y) : a < x ≤ y ≤ b}

)
Note that, by the definition of Stieltjes measure functions,

F (y)− F (a) = µ((a, y]) =
∫

(a,y]
dµ =

∫
1(a,y](x)dµ(x)

Then, using indicator functions and applying Fubini’s theorem we have:

∫
(a,b]
{F (y)− F (a)}dG(y) =

∫
(a,b]

∫
1(a,y]dµ(x)dG(y) (25)

=
∫

(a,b]
(y)
∫

1(a,y](x)dµ(x)dν(y) (26)

=
∫

1(a,b](y)
∫

1(a,y](x)dµ(x)dν(y) (27)

=
∫

1(a,b](y)
∫

1(a,y](x)dµ(x)dν(y) (28)

=
∫ ∫

1(a,b](y)1(a,y](x)dµ(x)dν(y) (29)

=
∫ ∫

1(a<x≤y≤b](x, y)dµ(x)dν(y) (30)

= (µ× ν)
(
{(x, y) : a < x ≤ y ≤ b}

)
(31)
(32)

�
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1.7.3

(ii)
∫

(a,b] F (y)dG(y) +
∫

(a,b]G(y)dF (y) = F (b)G(b)− F (a)G(a) +
∑

x∈(a,b]
µ({x})ν({x})

That by adding and subtracting F (a), using part (i), and simplifying we get

∫
(a,b]

F (y)dG(y) =
∫

(a,b]
F (y)− F (a) + F (a)dG(y) (33)

=
∫

(a,b]
F (y)− F (a)dG(y) +

∫
(a,b]

F (a)dG(y) (34)

= (µ× ν)
(
{(x, y) : a < x ≤ y ≤ b}

)
+
∫

(a,b]
F (a)dG(y) (35)

= (µ× ν)
(
{(x, y) : a < x ≤ y ≤ b}

)
+ F (a)

∫
(a,b]

dG(y) (36)

= (µ× ν)
(
{(x, y) : a < x ≤ y ≤ b}

)
+ F (a)

∫
(a,b]

dν (37)

= (µ× ν)
(
{(x, y) : a < x ≤ y ≤ b}

)
+ F (a)[G(b)−G(a)] (38)

(39)

And similarly, for the second term, we have∫
(a,b]

G(y)dF (y) = (µ× ν)
(
{(x, y) : a < y ≤ x ≤ b}

)
+G(a)[F (b)− F (a)] (40)

(41)

Note that

(µ× ν)
(
{(x, y) : a < x ≤ y ≤ b}

)
+ (µ× ν)

(
{(x, y) : a < y ≤ x ≤ b}

)
(42)

=
∫ ∫

1(a,b](x)1(a,b](y)dF (x)dG(y) +
∫ ∫

1(a<x=y≤b](x, y)dF (x)dG(y) (43)

And that ∫ ∫
1(a,b](x)1(a,b](y)dF (x)dG(y) =

(
F (b)− F (a)

)(
G(b)−G(a)

)
(44)

= F (b)G(b)− F (b)G(a)− F (a)G(b) + F (a)G(a) (45)
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1.7.3

Also, since F , and G are Stieltjes measure functions (i.e. non-decreasing and right-continuous), they may
have at most countably many discontinuities, as proven in exercise 1.2.3 in Homework 1. Hence µ(x) and
ν(x) are non-zero on at most countably many x ∈ (a, b]. It follows that

∫ ∫
1(a<x=y≤b](x, y)dF (x)dG(y) = (µ× ν)

(
{(x, y) : a < x = y ≤ b}

)
(46)

= (µ× ν)
(
{(x, x) : a < x ≤ b}

)
(47)

=
∑

x∈(a,b]

µ{x} × ν{x} (48)

Putting it all together, we have

∫
(a,b]

F (y)dG(y) +
∫

(a,b]
G(y)dF (y) =

∫ ∫
1(a,b](x)1(a,b](y)dF (x)dG(y) (49)

+
∫ ∫

1(a<x=y≤b](x, y)dF (x)dG(y) (50)

+ F (a)[G(b)−G(a)] +G(a)[F (b)− F (a)] (51)
= F (b)G(b)− F (b)G(a)− F (a)G(b) + F (a)G(a) (52)

+ F (a)G(b)− F (a)G(a) + F (b)G(a)− F (a)G(a) (53)

+
∑

x∈(a,b]

µ{x} × ν{x} (54)

= F (b)G(b)− F (a)G(a) +
∑

x∈(a,b]

µ{x} × ν{x} (55)

�

(iii) if F = G is continuous then
∫

(a,b] 2F (y)dF (y) = F 2(b)− F 2(a)

F = G =⇒ µ = ν. Furthermore, continuity of F implies that µ({x}) = 0 for all x. Substituting these into
part (ii), we get

∫
(a,b]

F (y)dG(y) +
∫

(a,b]
G(y)dF (y) = F (b)G(b)− F (a)G(a) +

∑
x∈(a,b]

µ{x} × ν{x} (56)

= F (b)G(b)− F (a)G(a) +
∑

x∈(a,b]

µ{x} × µ{x} (57)

= F (b)F (b)− F (a)F (a) + 0 (58)
= F 2(b)− F 2(a) (59)

�
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2.1.12

2.1.12
Let Ω = {1, 2, 3, 4} and F = 2Ω, and P({i}) = 1/4. Give an example of two collections of sets A1
and A2 that are independent but such that σ(A1) and σ(A2) are not independent.

Let A1 = {{1, 2}, {2, 3}} and A2 = {{1, 3}}. Then A1 and A2 are independent since

P({1, 2} ∩ {1, 3}) = P({1}) = 1/4 = 1/2× 1/2 = P({1, 2})P({1, 3}), and

P({2, 3} ∩ {1, 3}) = P({3}) = 1/4 = 1/2× 1/2 = P({2, 3})P({1, 3})

But σ(A1) and σ(A2) are not indepndent since

{1, 2} ∪ {2, 3} = {1, 2, 3} ∈ σ(A1), and {1, 3} ∈ σ(A2) and

P({1, 2, 3} ∩ {1, 3}) = P({1, 3}) = 1/2 6= 3/4× 1/2 = P({1, 2, 3})P({1, 3}) �

Let Fn, F be distribution functions of random variables Xn, X. Show that if Xn ⇒ X and
P (Xn = x)→ P (X = x) for all x, then Fn(x)→ F (x) for all x.

Proof

By theorem 3.2.5 in Durrett, the following statements are equivalent:

(i) Xn ⇒ X

(ii) For all open sets G, lim infn→∞ P (Xn ∈ G) ≥ P (X ∈ G)

(iii) For all closed sets K, lim supn→∞ P (Xn ∈ K) ≤ P (X ∈ K)

Therefore, using that (i) ⇒ (iii), we have

lim sup
n→∞

P (Xn ≤ x) ≤ P (X ≤ x) for all x (60)

Then, using that (i) ⇒ (ii), we have

lim inf
n→∞

P (Xn < x) ≥ P (X < x) for all x (61)

Furthermore, we are given P (Xn = x)→ P (X = x) which implies that lim infn→∞ P (Xn = x) = P (X = x),
which implies that

lim inf
n→∞

P (Xn = x) ≥ P (X = x) (62)

Then, adding (2) and (3) we get that

lim inf
n→∞

P (Xn ≤ x) ≥ P (X ≤ x) for all x (63)

Then, combining (1) and (4), we have

lim sup
n→∞

P (Xn ≤ x) ≤ P (X ≤ x) ≤ lim inf
n→∞

P (Xn ≤ x) for all x (64)

which implies that P (Xn = x)→ P (X = x) as desired. �
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3.2.11

3.2.1
Give an example of randm variables Xn with densities fn so that Xn ⇒ a uniform distribution
on (0, 1) but fn(x) does not converge to 1 for any x ∈ [0, 1]

Let Xn be the random variable with density fn(x) = 1 + 2π cos(2πnx).

Then
∫ 1

0 fn(x)dx = 1 and Fn =
∫
fn(x)dx = x + sin(2πx)

n → x for all x ∈ [0, 1] while fn(x) 9 x for all
x ∈ [0, 1] �

3.2.9
If Fn ⇒ F and F is continuous then supx |Fn(x)− F (x)| → 0

Fix ε > 0 and choose k such that 1
k <

ε
2 , and for i = 0, 1, ..., k − 1, k, choose xi ∈ R ∪ {−∞,∞} such that

F (xi) = i
k . Such xi exist by continuity of F .

Since Fn ⇒ F , ∃Ni ∈ N such that |Fn(xi)− F (xi)| ≤ ε
2 for i = 0, 1, ..., k − 1, k, for all n > Ni.

Fix i and note that for all x ∈ (xi−1, xi], we have Fn(x) ≤ Fn(xi), and Fn(xi−1) ≤ F (x) by monotonicity of
F and Fn. Hence,

Fn(x)− F (x) ≤ Fn(xi)− F (xi−1) = Fn(xi)− (F (xi)−
1
k

) < ε (65)

Fn(x)− F (x) ≥ Fn(xi−1)− F (xi) = Fn(xi−1)− (F (xi−1) + 1
k

) > −ε (66)

so |Fn(x)− F (x)| < ε for all n > Ni, i = 0, 1, ..., k− 1, k. Now choose N∗ = max{Ni : i = 0, 1, ..., k− 1, k} to
get |Fn(x)− F (x)| < ε for all x, for all n > N∗, and we have the desired result. �

3.2.11
Let Xn, 1 ≤ n ≤ ∞ be integer valued. Show that Xn ⇒ X if and only P (Xn = m) → P (X∞ = m)
for all m.

Proof

(⇒)

Suppose Xn ⇒ X. Then Fn(x)→ F (x) for all continuity points x of F . Fix m and let a ∈ [m,m+ 1) and
b ∈ [m− 1,m) be continuity points. Note that F may have at most countably many discontinuity points so a
and b must always exist.

P (Xn = m) = Fn(a)− Fn(b)→ F (a)− F (b) = P (X∞ = m)

(⇐)

Suppose P (Xn = m)→ P (X∞ = m). Then Fn(x) =
∑
m≤x P (Xn = m)→

∑
m≤x P (X∞ = m) = F (x)

�
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3.3.2

3.3.2
(i) Show that µ({a}) = limT→∞

1
2T
∫ T
−T e

−itaφ(t)dt

lim
T→∞

1
2T

∫ T

−T
e−itaφ(t)dt = lim

T→∞

1
2T

∫ T

−T
e−ita

∫
R
eitxdµ(x)dt

= lim
T→∞

1
2T

∫ T

−T

∫
R
e−itaeitxdµ(x)dt

= lim
T→∞

1
2T

∫
R

∫ T

−T
e−itaeitxdtdµ(x) by Fubini

= lim
T→∞

1
2T

∫
R

∫ T

−T
eit(x−a)dtdµ(x)

= lim
T→∞

1
2T

∫
x=a

∫ T

−T
eit(x−a)dtdµ(x) + lim

T→∞

1
2T

∫
x 6=a

∫ T

−T
eit(x−a)dtdµ(x)

= µ({a}) + 0

(67)

since

lim
T→∞

1
2T

∫
x=a

∫ T

−T
eit(x−a)dtdµ(x) = lim

T→∞

1
2T

∫
R

∫ T

−T
e01{a}(x)dtdµ(x)

= lim
T→∞

1
2T

∫
R

2T1{a}(x)dµ(x)

=
∫
R

1{a}(x)dµ(x) = µ({a})

(68)

lim
T→∞

1
2T

∫
x 6=a

∫ T

−T
eit(x−a)dtdµ(x) = lim

T→∞

1
2T

∫
R

∫ T

−T
cos(t(x− a)) + i sin(t(x− a))dtdµ(x)

= lim
T→∞

1
2T

1
x− a

∫
x 6=a

sin(t(x− a))|T−T − i cos(t(x− a))|T−T dµ(x)

= lim
T→∞

1
2T

1
x− a

∫
x 6=a

sin(T (x− a))− sin(−T (x− a))

− i
(

cos(T (x− a))− cos(−T (x− a))
)
dµ(x)

= lim
T→∞

1
2T

1
x− a

∫
x 6=a

sin(T (x− a)) + sin(T (x− a))

− i
(

cos(T (x− a))− cos(T (x− a))
)
dµ(x)

= lim
T→∞

1
2T

1
x− a

∫
x 6=a

2 sin(T (x− a)))dµ(x)

= lim
T→∞

∫
x 6=a

sin(T (x− a)))
T (x− a) dµ(x)

=
∫
x 6=a

lim
T→∞

sin(T (x− a)))
T (x− a) dµ(x) by DCT

= 0

(69)
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3.3.2

(ii) If P (X ∈ hZ) = 1 where h > 0, then its ch.f. has φ(2π/h + t) = φ(t), so P (X = x) =
h
2π
∫ π/h
−π/h e

−itxφ(t)dt

Note that I’m using y ∈ hZ in place of the x ∈ hZ that Durett uses for this question.

h

2π

∫ π/h

−π/h
e−ityφ(t)dt = h

2π

∫ π/h

−π/h

∫
R
e−ityeitxdµ(x)dt

= h

2π

∫ π/h

−π/h

∫
R
eit(x−y)dµ(x)dt

= h

2π

∫
R

∫ π/h

−π/h
eit(x−y)dtdµ(x) by Fubini

= h

2π

∫
x=y

∫ π/h

−π/h
eit(x−y)dtdµ(x) + h

2π

∫
x 6=y

∫ π/h

−π/h
eit(x−y)dtdµ(x)

(70)

h

2π

∫
x=y

∫ π/h

−π/h
eit(x−y)dtdµ(x) = h

2π

∫
R

∫ π/h

−π/h
eit(y−y)1{y}(x)dtdµ(x)

= h

2π

∫
R

∫ π/h

−π/h
1{y}(x)dtdµ(x)

= h

2π
2π
h

∫
R

1{y}(x)dµ(x)

= µ({y}) = P(X = y)

(71)

h

2π

∫
x 6=y

∫ π/h

−π/h
eit(x−y)dtdµ(x) = h

2π

∫
x6=y

∫ π/h

−π/h
cos(t(x− y)) + i sin(t(x− y))dtdµ(x)

= h

2π
1

x− y

∫
x 6=y

sin(t(x− y))|π/h−π/h − i cos(t(x− y))|π/h−π/hdµ(x)

=
∫
x 6=y

h

2π
2 sin(πh (x− y))

x− y
dµ(x)

=
∫
x6=y

h

π

sin(πh (x− y))
x− y

dµ(x) = (*)

(72)

If show (*) = 0 then the proof is complete. To see why it is zero, first note that sin(nπ) = 0 for all n ∈ Z;
second, note that y ∈ hZ by assumption – this implies that y/h ∈ Z; and third, note that P(X ∈ hZ) = 1 by
assumption. Therefore, x−yh ∈ Z and thus sin(π (x−y)

h ) = 0.

(iii) If X = Y + b then Eexp(itX) = eitbEexp(itY ). So if P (X ∈ b+ hZ) = 1, the inversion formula
in (ii) is valid for x ∈ b+ hZ.

φX(t) = eitbφY (t) and so

P (X = x) = h

2π

∫ π/h

−π/h
e−itxφX(t)dt

= h

2π

∫ π/h

−π/h
e−itxeitbφY (t)dt

= h

2π

∫ π/h

−π/h
e−it(x−b)φY (t)dt

= P (Y = x− b)

(73)

�
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3.3.10

3.3.8
Use the last result to conclude that if X1, X2, ... are independent and have the Cauchy distri-
bution, then (X1 + ...+Xn)/n has the same distribution as X1.

φXi(t) = exp(−|t|)⇒ φXi
n

(t) = φXi( tn ) = exp(−| tn |)⇒ φ(X1
n +...+Xn

n )(t) = exp(−| tn |)
n = exp(−|t|) for iid Xi,

by theorem 3.3.2 �

3.3.9
Suppose Xn ⇒ X and Xn has a normal distribution with mean 0 and variance σ2

n. Prove that
σ2
n → σ ∈ [0,∞)

Xn
d→ X ⇒ φXn(t)→ φX(t) for all t ∈ R.

Since Xn ∼ N (0, σ2
n), we have φXn(t) = exp(−σ2

nt
2/2) for all n.

φXn(0) = 1 for all n, which implies that φX(0) = 1. And also, φXn(t) ≤ 1 for all t, n, which implies that
φX(t) ≤ 1 for all t.

By theorem 3.3.1, φX(t) is uniformly continuous. Therefore for all ε > 0 there exists δ > 0 such that
|φX(r)− φX(r)| < ε whenever |r − s| < δ.

Set ε = 1/2 and r = 0, then by uniform continuity and the fact that φX(0) = 1, we have |1− φX(s)| < 1/2.
A little manipulation gives 1− φX(s) ≤ |1− φX(s)| < 1/2⇒ 1/2 < φX(s) for s ∈ (−δ, δ).

Note that σ2
n = − 2

t2 log(φXn(t)) for all t 6= 0 ∈ R. And by continuity of logarithm and the fact that
φXn(t)→ φX(t), we have − 2

t2 log(φXn(t))→ − 2
t2 log(φX(t))

Fix t = s∗ ∈ (0, s), then 1/2 < φX(s∗) ≤ 1.

then σ2
n = − 2

s∗2 log(φXn(s∗))→ − 2
s∗2 log(φX(s∗)) = σ2

σ2 ∈ [0,∞) because 1/2 < φX(s∗) ≤ 1. �

3.3.10
Show that if Xn and Yn are independent for 1 ≤ n ≤ ∞, Xn ⇒ X∞, and Yn ⇒ Y∞, then Xn +Yn ⇒
X∞ + Y∞

Since Xn and Yn are independent, we have

φXn+Yn(t) = φXn(t)φYn(t)→ φX∞(t)φY∞(t) = φX∞+Y∞(t) �
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3.3.26

3.3.13
Let X1, X2, ... be independent taking values 0 and 1 with probability 1/2 each. X =

∑
j≥1Xj/3j

has the Cantor distribution. Compute the ch.f. φ of X and notice that φ has the same value
at t = 3kπ for k = 1, 2, 3, ...

φXi(t) = 1
2 + 1

2e
it

φ 2Xj
3j

(t) = 1
2 + 1

2e
i2t/3j

φX(t) =
∏∞
j=1 φ 2Xj

3j
(t) =

∏∞
j=1

[
1
2 + 1

2e
i2t/3j

]

φX(3kπ) =
∞∏
j=1

φ 2Xj
3j

(3kπ)

=
∞∏
j=1

[1
2 + 1

2e
i2(3kπ)/3j

]
=
∞∏
j=1

[1
2 + 1

2e
i2π3k−j

]
=
∞∏
j=1

[1
2 + 1

2 cos(2π3k−j) + i
1
2 sin(2π3k−j)

]
=
∞∏
j≤k

[1
2 + 1

2 cos(2π3k−j) + i
1
2 sin(2π3k−j)

] ∞∏
j>k

[1
2 + 1

2 cos(2π3k−j) + i
1
2 sin(2π3k−j)

]
=
∞∏
j≤k

[
1 + 0

] ∞∏
j>k

[1
2 + 1

2 cos(2π3k−j) + i
1
2 sin(2π3k−j)

]
(*)

=
∞∏
j>0

[1
2 + 1

2 cos(2π3−j) + i
1
2 sin(2π3−j)

]
=
∞∏
j=1

[1
2 + 1

2e
it3−j

]

(74)

which does not depend on k.

Note that (*) holds because for all j ≤ k, cos(2π3k−j) = 1 and sin(2π3k−j) = 0. �

3.3.23
If X1, X2, ... are independent and have characteristic function exp(−|t|α) then (X1 + ...+Xn)/n1/α

has the same distribution as X1.

φXi(t) = exp(−|t|α) ⇒ φ Xi

n1/α
(t) = exp(−| t

n1/α |α) = exp(− |t|
α

n ) ⇒ φ X1
n1/α+...+ Xn

n1/α
(t) =

[
exp(− |t|

α

n )
]n =

exp(−|t|α) = φX1(t) �

3.3.26
Show that if X and Y are independent and X+Y and X have the same distribution then Y = 0
a.s.

φX+Y (t) = φX(t)φY (t) = φX(t)
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5.1.7

⇒ φX(t)(1− φY (t)) = 0 for all t. So either φX(t) = 0 or (1− φY (t)) = 0 for all t.

Since, by definition, φX(0) = 1, it follows that φX(t) 6= 0 for all t, and therefore, φY (t) = 1 for all t.

φY (t) = 1⇒ limh↓0
φY (h)−2φY (0)+φY (−h)

h2 = limh↓0
1−2+1
h2 = 0⇒ E|Y |2 <∞ by theorem 3.3.9.

Then we apply theorem 3.3.8 (since E|Y |2 <∞) to get φY (t) = 1 + itEY − t2E(Y 2)/2 + o(t2). But since we
know that φX(0) = 1, it follows that EY = 0 and E(Y 2). Therefore Y = 0 a.s. �

5.1.3
Prove Chebyshev’s inquality. If a>0 then P (|X| ≥ |F) ≤ a−2E(X2|F)

Note that 1|X|≥a = 1|X|/a≥1 = 1X2/a2≥1 ≤ X2/a2. Thus,

P (X ≥ a|F) = E[1|X|≥a|F ]
= E[1X2/a2≥1|F ]
≤ E[X2/a2|F ]
= a−2E[X2|F ]

(75)

�

5.1.4
Suppose X ≥ 0 and EX =∞. Show that there exists a unique F-measurable Y with 0 ≤ Y ≤ ∞
such that for all A ∈ F we have ∫

A

XdP =
∫
A

Y dP

Hint: Let XM = X ∧M,YM = E(XM |F), and let M →∞

We will use the hint and let XM = X ∧M,YM = E(XM |F). Note that XM ↑ X as M →∞ and therefore
YM ↑ to some limit. Let Y = limM→∞ YM .

By the definition of conditional expectation, we have

∫
A

X ∧MdP =
∫
A

YMdP for all A ∈ F

Taking the limit as M →∞ and applying MCT to both sides of the equation (since XM ↑ X and YM ↑ Y )
we get

∫
A

XdP =
∫
A

lim
M→∞

X ∧MdP = lim
M→∞

∫
A

X ∧MdP = lim
M→∞

∫
A

YMdP =
∫
A

lim
M→∞

YMdP =
∫
A

Y dP

�

5.1.7
Show that when E|X|, E|Y |, and E|XY | are finite, each statement implies the next one and
give examples with X,Y ∈ {−1, 0, 1} a.s. that show the reverse implications are false: (i) X and
Y are independent, (ii) E(Y |X) = EY , (iii) E(XY ) = EXEY .

First note that E(Y |X) = E(Y |σ(X))
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5.1.9

(i) ⇒ (ii)

Let A ∈ σ(X). Then by the definition of conditional expectation we have
∫
A
Y dP =

∫
A
E(Y |σ(X))dP

Then
∫
A
Y dP = E[Y 1A] = EY E1A =

∫
A
EY dP , where the second equality follows from independence.

Example to demonstrate the converse is false:

Let X,Y ∈ {−1, 0, 1} with the following joint distribution:

X/Y -1 0 1
-1 0 0.25 0
0 0.25 0 0.25
1 0 0.25 0

Then, P (X = 0, Y = 0) = 0 6= 1/4 = 1/2 × 1/2 = P (X = 0)P (Y = 0). Therefore X and Y are not
independent.

(ii) ⇒ (iii)

CLAIM: E[E(Z|G)] = EZ
PROOF: By the second property of conditional expectation, for all A ∈ G,

∫
A
ZdP =

∫
A
E(Z|G)dP .

Let A = Ω, and we get EZ =
∫

Ω ZdP =
∫

ΩE(Z|G)dP = E[E(Z|G)]

By theorem 5.1.7, if X ∈ F and E|Y |, and E|XY | are finite, then E(XY |F) = XE(Y |F)

X ∈ σ(X) and the expectations are finite, so E(XY |σ(X)) = XE(Y |σ(X)) = XEY , where the second
equality follows from (ii). Then taking expectation of left and right sides of the equality we get: LHS:
E(XY ) = E[E(XY |σ(X))] and RHS: E[XEY ] = EXEY

Example to demonstrate the converse is false:

Let X ∈ {−1, 0, 1} and X ∈ {−1, 1} with the following joint distribution:

X/Y -1 1
-1 0 0.25
0 0.5 0
1 0 0.25

Then EXY = 0 = EXEY but E(Y |X = −1) = 1 6= 0 = EY

�

5.1.9
Let var(X|F) = E(X2|F)− E(X|F)2. Show that var(X) = E(var(X|F)) + var(E(X|F))

E(var(X|F)) = E[E(X2|F)− E(X|F)2] = E[E(X2|F)]− E[E(X|F)2]
= E[X2]− E[E(X|F)2]

(76)

var(E(X|F)) = E[E(X|F)2]− E[E(X|F)]2

= E[E(X|F)2]− E[X]2
(77)

Then,
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5.1.12

E(var(X|F)) + var(E(X|F)) = E[X2]− E[E(X|F)2] + E[E(X|F)2]− E[X]2

= E[X2]− E[X]2

= var(X)
(78)

�

5.1.11
Show that if X and Y are random variables with E(Y |G) = X and EY 2 = EX2 <∞, then X = Y
a.s.

By theorem 5.1.7, if X ∈ G and E|Y |, E|XY | <∞ then E(XY |G) = XE(Y |G)

Note that X = E(Y |G) ∈ G by definition of conditional expectation. And (EXY )2 ≤ EX2EY 2 <∞ by the
Cauchy-Schwarz inequality and the assumption of the question. Therefore, we can apply the theorem to get
E(XY |G) = XE(Y |G). Taking expectation on both sides gives:

E[E(XY |G)] = E[XE(Y |G)]
= E[X2]

(79)

Then

E(X − Y )2 = E(X2)− 2E(XY ) + E(Y 2)
= E(X2)− 2E(X2) + E(Y 2)
= E(X2)− 2E(X2) + E(X2)
= 0

(80)

Then by Markov’s inequality we have for all ε > 0 P (|X − Y | ≥ ε) ≤ E(X−Y )2

ε2 = 0. Therefore X = Y a.s.

5.1.12
The result in the last exercise implies that if EY 2 < ∞ and E(Y |G) has the same distribution
as Y , then E(Y |G) = Y a.s. Prove this under the assumption E|Y | < ∞. Hint: The trick is to
prove that sgn(X) = sgn(E(X|G)) a.s. and then take X = Y − c to get the desired result.

Suppose X is a random variable with E|X| < ∞ such that X d= E(X|G). Let A = {ω : X(ω) > 0},
B = {ω : E(X|G)(ω) > 0}.

By the definition of conditional expectation we have
∫
B
XdP =

∫
B
E(X|G)dP .

And since X d= E(X|G), we have
∫
B
E(X|G)dP =

∫
A
XdP . Therefore

∫
B
XdP =

∫
A
XdP .

Furthermore,

∫
A∩B

XdP +
∫
A∩BC

XdP =
∫
A

XdP

=
∫
B

XdP

=
∫
A∩B

XdP +
∫
AC∩B

XdP

(81)
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5.4.7

which implies that
∫
A∩BC XdP =

∫
AC∩B XdP

Note that X(A ∩BC) > 0 and X(AC ∩B) ≤ 0. Therefore, both integrals above are =0, and hence
{X > 0, E(X|G) ≤ 0} = A ∩BC = φ. Since X d= E(X|G) it follows that {E(X|G) > 0, X ≤ 0} = φ also.
Thus sgn(X) = sgn(E(X|G)) a.s.

Now suppose that Y is a random variable such that E|Y | <∞ such that X d= E(Y |G). Let X = Y − c. By
the above arguments, we have that {Y − c > 0, E(Y − c|G) ≤ 0} = {E(Y − c|G) > 0, Y − c ≤ 0} = φ or
equivalently {Y > c,E(Y |G) ≤ c} = {E(Y |G) > c, Y ≤ c} = φ.

Since Q is dense in R we have that

{Y 6= E(Y |G)} =
⋃
c∈Q

(
{Y > c,E(Y |G) ≤ c} ∪ {E(Y |G) > c, Y ≤ c}

)
= φ

Therefore E(Y |G) = Y a.s. as desired �

#5.3.2. ### Give an example of a martingale Xn with supn |Xn| < 1 and P (Xn = ai.o.) = 1 for a = −1, 0, 1.
This example shows that it is not enough to have sup |Xn+1 −Xn| <∞ in Theorem 5.3.1.

Let Ui
iid∼ Uniform(0, 1), i ∈ N.

If Xn = 0 then let Xn+1 = 1 if Un+1 ≥ 1/2, and Xn+1 = −1 if Un+1 < 1/2.

If Xn 6= 0 then let Xn+1 = 0 if Un+1 > 1/n2, and Xn+1 = n2Xn if Un+1 < 1/n2.∑
1/n2 <∞ so by the Borel Cantelli lemma we evenentually just go from 0 to ±1 and then back to 0 again,

so sup |Xn| <∞.

5.4.7
Let Xn and Yn be martingales with EX2

n <∞ and EY 2
n <∞.

EXnYn − EX0Y0 =
n∑

m=1
E(Xm −Xm−1)(Ym − Ym−1)

Note that

E(Xm −Xm−1)(Ym − Ym−1) = E[(Xm −Xm−1)Ym]− E[(Xm −Xm−1)Ym−1)]
= EXmYm − EXm−1Ym − EXmYm−1 + EXm−1Ym−1

(82)

By theorem 5.4.6 (orthogonality of martingale increments) we have that E[(Xm −Xm−1)Ym−1] = 0 Then we
have

E[(Xm −Xm−1)Ym−1] = 0⇒ E[XmYm −Xm−1Ym−1] = 0⇒ EXmYm−1 = EXm−1Ym−1

and similarly
EYmXm−1 = EXm−1Ym−1

Substituting these into (1) and summing from m = 1 to n we have
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5.4.7

n∑
m=1

E(Xm −Xm−1)(Ym − Ym−1) =
n∑

m=1
E[(Xm −Xm−1)Ym]− E[(Xm −Xm−1)Ym−1)]

=
n∑

m=1
EXmYm − EXm−1Ym − EXmYm−1 + EXm−1Ym−1

=
n∑

m=1
EXmYm − EXm−1Ym−1 − EXm−1Ym−1 + EXm−1Ym−1

=
n∑

m=1
EXmYm − EXm−1Ym−1

= EXnYn − EX0Y0

(83)

(The last equality follows by telescoping the sum) �
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5.4.10

5.4.8
Let Xn, n ≥ 0 be a martingale and let ξn = Xn −Xn−1 for n ≥ 0. Show that if EX2

0 ,
∑∞
m=1 ξ

2
m <∞

for n ≥ 1 then Xn → X∞ a.s. and in L2

In the previous exercise, let X = Y and note that
n∑

m=1
ξ2
m =

n∑
m=1

E(Xm −Xm−1)2

=
n∑

m=1
E(Xm −Xm−1)(Xm −Xm−1)

= EXnXn − EX0X0

= EX2
n − EX2

0

(84)

Rearranging (3) and using that EX2
0 ,
∑n
m=1 ξ

2
m <∞ we get EX2

n = EX2
0 +

∑n
m=1 ξ

2
m <∞.

Thus supEX2
n <∞, and so Xn −→ X a.s. and in Lp by theorem 5.4.5 (Lp convergence theorem). �

5.4.10
Let ξ1, ξ2, ... be i.i.d. with Eξi = 0 and Eξ2

i < ∞. Let Sn = ξ1 + ... + ξn. Theorem 5.4.1 implies
that for any stopping time $N, ESNn = 0. Use Theorem 5.4.12 to conclude that if EN1/2 <∞
then ESN = 0.

Sn is a martingale.

By theorem 5.2.6, for any stopping time N , and martingale Sn, SN∧n is a martingale.

Note that EN1/2 <∞⇒ N1/2 <∞ a.s.⇒ N <∞ a.s.

Furthermore, ESN∧n=0, because {N∧n = n} ∈ Fn for all n so N∧n is a stopping time, and, P (N∧n ≤ n) = 1
so by theorem 5.4.1, we have 0 = ES0 = ESN∧n = ESn = 0.

Also, note that SN∧m − SN∧m−1 =
{
Sm − Sm−1, if N ≥ m
0, otherwise

and An =
∑n
m=1E((SN∧m − SN∧m−1)2|Fm−1) =

∑N∧n
m=1 E(ξ2

m|Fm−1) =
∑N∧n
m=1 Eξ

2
m <∞

by the assumptions of independence and finiteness of second moments of ξi’s.

Letting n→∞, we have that A∞ <∞ since N <∞ a.s..

Now by theorem 5.4.12, we have E(sup |SN∧n|) ≤ 3EA1/2
∞ <∞.

Finally, since i. |SN∧n| ≤ sup |SN∧n| for all n, and ii. E(sup |SN∧n|) <∞, and iii. ESN∧n = 0, we can use
the dominated convergence theorem to get

ESN = E( lim
n→∞

SN∧n) = lim
n→∞

E(SN∧n) = lim
n→∞

0 = 0 �
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5.5.5

5.5.2
Let Z1, Z2, ... be i.i.d. with E|Zi| < ∞, let θ be an independent r.v. with finite mean, and let
Yi = Zi + θ. If Zi is normal(0,1) then in statistical terms we have a sample from a normal
population with variance 1 and unknown mean. The distribution of θ is called the prior
distribution, and P (θ ∈ ů|Y1, ..., Yn) is called the posterior distribution after n observations.
Show that E(θ|Y1, ..., Yn)→ θ a.s.

Let Fn = σ(Y1, ..., Yn) and F∞ = σ(
⋃
n Fn).Then

E(θ|Fn) a.s.−→ E(θ|F∞) = θ

where the a.s. convergence on the left is due to theorem 5.5.7, and the equality on the right is due to the fact
that θ ∈ F∞ which is a consequence of the strong law of large numbers as follows:

Y1 + ...+ Yn
n

= θ + Z1 + ...+ Zn
n

a.s.−→ θ + EZi = θ + 0

�

5.5.5
Let Xn be a r.v.’s taking values in [0,∞). Let D = {Xn = 0for some n ≥ 1} and assume that
P (D|X1, ..., Xn) ≥ δ(x) > 0 on {Xn ≤ x}. Use theorem 5.5.8 to conclude that

P (D ∪ { lim
n→∞

Xn =∞}) = 1

By theorem 5.5.8, if Fn ↑ F∞ and A ∈ F∞, then E(1A|Fn)→ 1A
Let Fn = σ(X1, ..., Xn) and F∞ = σ(

⋃
n Fn). Then D ∈ F∞.

Let B = {ω : lim
n→∞

Xn(ω) 6=∞}. Note that P (B ∪Bc) = 1.

Let BM = {ω : lim inf
n→∞

Xn(ω) ≤M} for M ∈ N. Note that B =
⋃
M BM ,

Fix some M ∈ N, and note that for all ω ∈ BM , we have Xn(ω) ≤M + 1 infinitely often.

In other words, BM ⊂ {ω : Xn(ω) ≤M + 1 i.o.}.

Then by theorem 5.5.8, we have

0 < δ(M + 1) ≤ P (D|X1, ..., Xn) = P (D|Fn) = E(1D|Fn) −→ 1D (85)

which implies that BM ⊂ {ω : Xn(ω) ≤M + 1 i.o.} ⊂ D (because 0 < E(1D|F∞) ∈ {0, 1})

Since BM ⊂ D, and B =
⋃
M BM , we have B ⊂ D, and it follows that

1 ≥ P (D ∪ { lim
n→∞

Xn =∞}) = P (D ∪Bc) ≥ P (B ∪Bc) = 1

which gives the desired result. �
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5.7.2

5.7.2
Let Sn be an asymmetric simple random walk with 1/2 < p < 1, and let σ2 = pq. Use the fact
that Xn = (Sn − (p− q)n)2 − σ2n is a martingale to show var(Tb) = bσ2/(p− q)3.

Since Xn = (Sn − (p− q)n)2 − σ2n is a martingale, and Tb = inf{n : Sn = b} is a stopping time, it follows by
theorem 5.2.6 that XTb∧n = (STb∧n − (p− q)(Tb ∧ n))2 − σ2(Tb ∧ n) is also a martingale.

Since XTb∧0 = X0 = (S0 − (p − q)0)2 − σ20 = 0, and (Tb ∧ n) is a bounded stopping time, it follows by
theorem 5.4.1 that

EXTb∧0 = EXTb∧n = E[(STb∧n − (p− q)(Tb ∧ n))2 − σ2(Tb ∧ n)] = 0

Then we have
E[(STb∧n − (p− q)(Tb ∧ n))2] = E[σ2(Tb ∧ n)]

Using Fatou’s lemma (since (STb∧n − (p− q)(Tb ∧ n))2 ≥ 0), and bounded convergence theorem since (Tb ∧ n
is bounded) we have

E[(b− (p− q)Tb)2] = E[ lim
n→∞

(STb∧n − (p− q)(Tb ∧ n))2]

= E[lim inf
n→∞

(STb∧n − (p− q)(Tb ∧ n))2]

≤ lim inf
n→∞

E[(STb∧n − (p− q)(Tb ∧ n))2]

= lim inf
n→∞

E[σ2(Tb ∧ n)]

= lim
n→∞

E[σ2(Tb ∧ n)]

= E[ lim
n→∞

σ2(Tb ∧ n)] = σ2ETb = b/(2p− 1) <∞

(86)

Thus ET 2
b ≤ b/(2p− 1) <∞. Then,

0 = EXTb∧n = E[(STb∧n − (p− q)(Tb ∧ n))2 − σ2(Tb ∧ n)]
= E[S2

Tb∧n − 2STb∧n(p− q)(Tb ∧ n) + (p− q)2(Tb ∧ n)2 − σ2(Tb ∧ n)]
(87)

Note that STb∧n
2 ≤ b2 < ∞. Moreover, E[Tb ∧ n] ≤ E[Tb] = b/(2p − 1) < ∞ by theorem 5.7.7 (d). And

ESTb∧n(Tb ∧ n) ≤
[
E[S2

Tb∧n]E[(Tb ∧ n)2]
]1/2

<∞ by the Cauchy-Schwarz inequality and (5).

Thus we can apply dominated convergence theorem to (6) to get

0 = lim
n→∞

E[STb∧n − (p− q)(Tb ∧ n))2 − σ2(Tb ∧ n)]

= lim
n→∞

E[S2
Tb∧n − 2STb∧n(p− q)(Tb ∧ n) + (p− q)2(Tb ∧ n)2 − σ2(Tb ∧ n)]

= E lim
n→∞

[S2
Tb∧n − 2STb∧n(p− q)(Tb ∧ n) + (p− q)2(Tb ∧ n)2 − σ2(Tb ∧ n)]

= E[b2 − 2b(p− q)Tb + (p− q)2T 2
b − σ2Tb]

= b2 − 2b(p− q)b/(2p− 1) + (p− q)2ET 2
b − σ2b/(2p− 1)

= b2 − 2b(p− q)b/(p− q) + (p− q)2ET 2
b − σ2b/(p− q)

= −b2 + (p− q)2ET 2
b − σ2b/(p− q)

(88)

Rearranging (7) gives ET 2
b = σ2b/(p−q)+b2

(p−q)2 = σ2b/(p− q)3 + b2/(p− q)2

Finally, using the fact that (p− q) = 2p− 1 and E[Tb] = b/(2p− 1) (theorem 5.7.7 d), we get the desired
result:

V ar(Tb) = E[T 2
b ]− E[Tb]2 = σ2b/(p− q)3 + b2/(p− q)2 − b2/(2p− 1)2 = σ2b/(p− q)3 �
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