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1.1.4
A o-field F is said to be countably generated if there is a countable collection C C F so that
o(C) = F. Show that R? is countably generated.

Since the rationals, Q are dense in the real line, R, it follows that any = € R can be represented as the limit
of a sequence {q, }nen where ¢, € Q Vn.

Let C = {(a,b) : —o0 < a <b<oo;a,b € Q}. Any open set in R may be constructed as a countable union
of the elements in C

Let R be the Borel sets on R. By definition, R is the smallest sigma-algebra containing the open sets.
Therefore, C C R since every element of C is an open set. Then,

CCR = o(C)Co(R)=R

By the definiton of sigma-algebras and C, we have that every open set is contained in o(C). By the definition
of Borel sets, R is the smallest sigma-algebra containing the open sets. Therefore R C o(C).

Thus, R = ¢(C).

To extend the proof to R?, we use C% = {(ay,by) X ... X (ag,bq) : —o00 < a; < b; < o0;a;,b; € QVi}. Note
that C? is a countable set.

Lemma 2: For any open set G C R? there exists a countable collection {G;} of open sets such that

G = U;)il Gi

Proof of Lemma 2: Since G is open, for every x € G there exists an open ball centred around x contained in
G. Within this open ball, there exists an open rectangle with rational endpoints containing x. We will denote
this box by C? and note that C¢ € C?. Furthermore, G = |J C? c C%.

zeG
U C¢ is an uncountable union of the elements of a countable set C?. Therefore, G = |J C? may be
z€G zeG
re-indexed as a countable union, for example G = |J,_; G; where G; € ce, O

The result for R follows from the R case and Lemma 2.
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1.2.5

1.2.3

Show that a distribution function has at most countably many discontinuities.

This a consequence of the monotonicity of the distribution function. Let F' be a distribution function. And let
D be the set of points at which F is discontinuous. For each d € D, F(d—) = li%F(:zr) < liﬁ%F(z) = F(d+).

Therefore for all d € D there exists a unique rational number g such that F(d—) < qq < F(d+). The
collection {q4}4ep is consists of but D is uncountable. This is a contradiction and therefore a distribution
function cannot have uncountably many discontinuities.

O

1.2.5

Suppose X has continuous density f, P(a« < X < () =1 and g is a function that is strictly increas-
ing and differentiable on (a,3). Then ¢(X) has density f(g7'(y))/¢' (¢ (y)) for y € (g(a),g(B))
and 0 otherwise.

This follows from the chain rule, the fact that

d. _ B
@ 1= o)

and the fact that g is invertible since it is strictly increasing and differentiable.

Let F, and f, be the distribution and densitiy functions for g(X) respectively; and let Fiy and fx be the
distribution and density functions for X.

Fy(y) = P(9(X) <) (2)
= P(g7"(9(X)) <97'(v)) (3)
= Fx(97'(y)) (4)
Then by the definition of density,

f0) = B 5)
— Pyl ) (6)
— (o ) 700 7)

_ -1 1
Going from (7) to (8) uses (1). O
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1.3.5

1.3.5

Show that f is lower semicontinuous if and only if z: f(z) <a is closed for each a € R and
conclude that semicontinuous functions are measurable.

fisls.c. = {x: f(x) <a} is closed for all a € R. Proof:
Suppose { is l.s.c., then by definition: liminff(y) > f(z). For an arbitrary a € R let X, = {z : f(z) < a}.
y—x

Let {z,} be a sequence such that it converges to some limit 7 and z,, € X,Vn. If we show that € X, then
we are done.

Suppose for a contradiction that n ¢ X,. Then f(n) > a.
liminf f(z,) < a since x,, € X,Vn
n—oo
lim inf f(x) > f(n) since by assumption f is L.s.c.
T—n

Then putting it all together, we have:

liminf f(z,) < a < f(n) <liminff(z)

Tr—n

This is a contradiction because lim inf f(z,) > lim inf f(z)
n—o00 z—n

fisls.c. < {x: f(x) < a} is closed for all a € R. Proof:

Fix x and suppose A, = {y: f(y) < f(x) — €} is a closed set. Then AS = {y: f(y) > f(z) — €} is open.

By definition, liminf f(y) = }ir%[inf{f(y) 1y € B(x,0) \ z}] where B(x,d) is an open ball of radius § centered
y—ax —

at z.

By definition Age is an open set containing of z and so Ve > 0 36 > 0 such that B(z,d) C Age. Thus we can
say

liminff(y) = lim [mf{f(y) : y € B(x,9) \ z}] (9)

| ~ limfinf{f(5) :y € A, \ 2} (10)

By definition, f(y) > f(z) —e Ve > 0 Vy € Agg; therefore inf{f(y) : y € Age \a} > f(z)—e€
It follows that

lim inf f(y) = lim[inf{f(y) : y € AT, \ )] (11)
> f(z) (12)
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1.6.3

To show that f is measurable, we will apply Theorem 1.3.1.
Suppose f is Ls.c. and let A = (—00,a], a € R, where R is the real line.
Then f~1(A) = {x: f(x) € A} is a closed a set and A € R where R is the Borel sets.

f71(A) C R because f~1(A) is closed, R is the smallest sigma-algebra generated from the open sets, and R
is closed under complements.

Next, to prove that o({(—o00,a] : « € R}) = R, it suffices to show that any open interval (p,q) may be
expressed as the countable unions and intersections of the sets {(—oo,a] : @ € R} and its complements.

(.) = (00,8 () (U (00,0 - 1)

i>1

Then the result follows from exercise 1.1.4. O

1.6.3

Chebyshev’s inequality is and is not sharp.
(i) Show that for fixed 0 < b < a there exists an X with EX? = ? for which P(|X| > a) = b*/a?

v_lo with probability b%/a?
)0, with probability 1 — b?/a?

Then P(|X| > a) = P(|X| = a) =b?/a® and EX? = 02(1 — b*/a?) + a®(b?/a?) = b?

(Il
(ii) Show that if 0 < EX? < co then lim a?P(|X| > a)/EX? =0
a—r o0
021{\X|2a} < X? and X? is integrable, and
a*1{x|za) =7 0
Therefore, QQ]P(\X| > a) = /021{\X|2a}dp ‘;__g‘); 0

Hence, a’P(|X| > a) /EX? “28°0 as desired

O
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1.6.8

1.6.5

Two nonexistent lower bounds.
(i) Show that if ¢ > 0, then inf{P(|X| >¢): EX =0,var(X) =1} =0

Let
—n, with probability 1/(2n?)
with probability 1/(2n?)

Xn=4qn,
0,  with probability 1 — 1/(n?)

Then EX,, = (—n) 5tz 4+ (n) 52z + (0) 2z = 0 and
var(X,) = E[X,, — EX,]2 = E(X,,)? = (-n)? 32 + (n)? 52 + (0)2(1 — &) =1
Note that P(|X,,| > €) = 1/n%? Vn > 1/e
Since 1/n? may be arbitrarily small, the result follows.
(ii) Show that if y > 1, 0% € (0,1), then inf{P(|X| > y) : EX = 1,var(X) = ¢%} =0
Let Y, =o0X, +1
Then EY,, =E(cX,, + 1) =cEX,, + 1 =1 and

var(Y,) = E[Y,, — EY,]? = EY;? — (EY,)? = ((—Un + 1)2# + (on + 1)2# + 0+ 1)1 -

2 2 2 2
o‘n“—2on+1 oc“n“4+2on+1 1N 2
2n2 + 2n2 + (1 n2) l=o

Similar to (i), note that P(|Y,| > e+ 1) = 1/n? Vn > 1/e

Since 1/n? may be arbitrarily small, the result follows.

1.6.8

1

7)) — 12 =

’I’L2

Suppose the probability measure y has u(A) = [, f(z)dxz for all A€ R. Use the proof technique

in Theorem 1.6.9 to show that for any g with g > 0 or [ |g(z)|u(dz) < oo we have

[ st@mtan) = [ g(a) @iz

(i) Indicator Functions: if B € § and g = 1p then

[ s@ntdn) = [ pian) =) = [ @i = [ gla)@yao
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1.6.8

(ii) Simple Functions: let g = Y1, ¢;1p,, where ¢; € R and B; € R. Using (i) and the linearity of
integration, we have:

[ot@mtdn) = [ 3~ citnutas (13)
i=1
=Y / 1, () (14)
= ;ci /B wu(dz) (15)
= ZCiM(Bi) (16)
_ ;c /B f(x)dz (17)
- /B i;cif(a:)d:c (18)
:/Zcﬂ&f(x)dx (19)
_ / o(2)f (2)dz (20)

(iii) Non-negative Functions let g > 0, and g, = min (([2"]‘(37)}/2"),71), where [z] = floor(z). Then g, is
simple for all n, and g,, T g. By applying MCT, we have

[st@mtan) = [ 1 g, ()n(da) (21)
= lim [ go(a)u(de) (22)
= lim [ gu(2)f(2)da (23)
~ [ 91 (@yis (24)

(iv) Integrable Functions for integrable g, let g™ = maz(g,0) and g~ = maz(—g,0); then g = g™ — g~, and

/ o()u(dz) = / 6" () — g~ (@)(dz) = / (6% (@) — g~ (@) f(x)da = / o(2) f(2)dz
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1.7.3

1.7.3

Let F, G be Stieltjes measure functions and let p, v be the corresponding measures on (R, R).
Show that:

(@) Sy {F W) — Fla)}dG(y) = (u x v)({(z,y) ra <z <y <b})

Note that, by the definition of Stieltjes measure functions,

F(y) - F(a) = ul(a,y]) = / d = / 0y (@)ds(z)

(a,y]

Then, using indicator functions and applying Fubini’s theorem we have:

) r@e) = [ 1 aneic) 25)
/(a,b]m / 1 o) (@)dis(z)d(y) (26)

- / L) / 101 (@) i) (y) (27)

- / L) / 10y () () (y) (25)

- / / 1) (9) L (0.9 () dpa()d(y) (29)

/ / Lacoeyes) (@ 9)du(@)dv(y) (30)

— (ux ) ({(z9) a <z <y<b)) (31)

(32)

O
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1.7.3

(1) Jiop FWAG(Y) + [, GW)dF (y) = FB)GO) — F(a)G(a) + >0 p({a})v({z})

z€(a,b]

That by adding and subtracting F'(a), using part (i), and simplifying we get

/( F@aaw) = [ P P+ Pty
= F(y) — F(a)dG(y) + F(a)dG(y)

(a,b] (a,b]

= x)({@) a<e sy <)+ [ F@dGw)

(a‘1b]

:(,w)mm:a<x<y<b})+p<a>/( RED

(uxl/)({(fay)5a<x§y§b})+F(a)/( b]dy

= (uxv)({(z,y) :a <z <y <b}) + F(a)|G() — G(a)]

And similarly, for the second term, we have

s G(y)dF(y) = (ux v)({(z,y) 1 a <y < 2 < b}) + G(a)[F(b) — F(a)]

Note that

(wxv)({(z,y)ra<z <y <b})+ (MXV)({(wy) a<y<az<b})

// ab 1(a b] dF dG //1(a<m y<b] Z, y dF )dG( )

And that

[ [ fan@nwir@dsm) = (F6) - F@) (G0) - G)
=F(b)G(b) — F(b)G(a) — F(a)G(b) + F(a)G(a)
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1.7.3

Also, since F, and G are Stieltjes measure functions (i.e. non-decreasing and right-continuous), they may
have at most countably many discontinuities, as proven in exercise 1.2.3 in Homework 1. Hence p(z) and
v(x) are non-zero on at most countably many = € (a,b]. It follows that

//1(a<w:y§b] (z,y)dF (x)dG(y) = (nx v)({(z,y) 1a <z =y < b}) (46)
=(pxv)({(z,z)  a <z <b}) (47)
= S ufa} x via} (48)

z€(a,b]

Putting it all together, we have

Lﬂmwm@+ﬁwmww@—//memm@Mwmmw (49)
//nmmmmxmﬁmmmw (50)
(G(b) — Cla)] + G(a)[F(b) — F(a)] (51)
=nwam—ﬂwa> F(a)G(b) + F(a)G(a) (52)
+ F(a)G(b) - F(a)Gla) + F(D)G(a) — F(a)Gla)  (53)
+ Z u{z} x v{z} (54)
z€(a,b]
— FB)GO) — F(a)Gla)+ 3 pfa} x vix) (55)

z€(a,b]

(iii) if F' = G is continuous then [, 2F(y)dF(y) = F*(b) — F*(a)

F =G = p = v. Furthermore, continuity of F' implies that pu({z}) = 0 for all 2. Substituting these into
part (ii), we get

/( . F(y)dG(y) + . G(y)dF(y) = F(b)G(b) — F(a)G(a) + z%b]u{x} x v{z} (56)
= F())G(b) — F(a)G(a) + Y pla} x p{z} (57)

— F(b)F(b) — F(a)F(a) + Se(a,b] (58)

= F2(b) — F*(a) (59)

O
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2.1.12

2.1.12

Let Q = {1,2,3,4} and F = 2%, and P({i}) = 1/4. Give an example of two collections of sets A,
and A, that are independent but such that o(A4;) and o(A;) are not independent.

Let A; = {{1,2},{2,3}} and A; = {{1,3}}. Then A; and A, are independent since

P{1,2} n{1,3}) =P({1}) =1/4 =1/2 x 1/2 = P({1,2})P({1, 3}), and

P({2,3} 1 {1,3}) = P({3}) = 1/4 = 1/2 x 1/2 = B({2,3)P({1,3})

But o(A;) and o(As) are not indepndent since

{1,2} U{2,3} = {1,2,3} € 0(A1), and {1,3} € 0(A2) and

P({1,2,3} N {1,3}) = P({1,3}) = 1/2 # 3/4 x 1/2 = P({1,2,3})P({1,3}) O

Let F,,F be distribution functions of random variables X,,,X. Show that if X, = X and
P(X, =z) —» P(X =z) for all z, then F,(z) — F(z) for all z.

Proof
By theorem 3.2.5 in Durrett, the following statements are equivalent:
(i) X, =X
(ii) For all open sets G, liminf,, o P(X, € G) > P(X € G)
(iii) For all closed sets K, limsup,,_, . P(X, € K) < P(X € K)
Therefore, using that (i) = (iii), we have

limsup P(X,, < z) < P(X <) for all z (60)

n—oo
Then, using that (i) = (ii), we have

liminf P(X,, < z) > P(X < z) for all z (61)

n—oo

Furthermore, we are given P(X,, = z) — P(X = z) which implies that liminf,,_,. P(X, = z) = P(X = x),
which implies that

liminf P(X,, =) > P(X =x) (62)

n— 00

Then, adding (2) and (3) we get that

liminf P(X, < z) > P(X < z) for all z (63)

n—oo

Then, combining (1) and (4), we have

limsup P(X,, < z) < P(X < z) <liminf P(X,, < z) for all = (64)
n—00 n—co
which implies that P(X,, = z) — P(X = z) as desired. O
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3.2.11

3.2.1

Give an example of randm variables X,, with densities f, so that X,, = a uniform distribution
on (0,1) but f,(xz) does not converge to 1 for any x € [0, 1]

Let X,, be the random variable with density f, () = 1 + 27 cos(2mnz).

Then fol fo(@)dz =1 and F, = [ fo(z)de = = + sn2re) s o for all € [0,1] while f,(z) - z for all

n

xz € [0,1] O

3.2.9

If F, = F and F is continuous then sup, |F,(z) — F(x)| = 0

Fix € > 0 and choose k such that % < §,and for i = 0,1,....k — 1, k, choose x; € RU {—00,00} such that
F(z;) = %. Such z; exist by continuity of F.
Since F, = F, 3N; € N such that |Fy,(z;) — F(x;)| < § fori =0,1,....,k — 1,k, for all n > Nj.

Fix ¢ and note that for all x € (z;,_1, z;], we have F,(z) < F,,(x;), and F,(x;—1) < F(x) by monotonicity of
F and F,,. Hence,

F,(z) — F(x) < Fo(z;) — F(zi—1) = Fp(z;) — (F(x;) — %) <e (65)
Fn(as) — F(J?) > Fn(mi—l) — F(.]Zl) = Fn(mi—l) — (F(.’Ei_l) + %) > —€ (66)

so |Fp(z) — F(x)] < eforalln > N;; i =0,1,....k — 1, k. Now choose N* =max{N;:i=0,1,...k—1,k} to
get |F,(x) — F(z)| < € for all z, for all n > N,, and we have the desired result. O

3.2.11

Let X,,1 <n < oo be integer valued. Show that X, = X if and only P(X,, = m) = P(X.x = m)
for all m.

Proof

=)

Suppose X,, = X. Then F,(z) — F(x) for all continuity points x of F. Fix m and let a € [m,m + 1) and
b € [m — 1, m) be continuity points. Note that F' may have at most countably many discontinuity points so a
and b must always exist.

(<)

Suppose P(X,, =m) = P(Xo =m). Then F,(z) =" P(X, =m) =3, P(Xooc =m) = F(z)

m<zx
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3.3.2

3.3.2

(i) Show that p({a}) =lim7_ 5= f_TT e~ g (t)dt

1 (7 it ot it
. —ita — ita zzd
g [ oot = o [ [

— _ —ita ztzd d
Th / / uiw

— _ —ita ztz o s
= Tlggo 5T / / dtdu(z) by Fubini (67)
— 1 - z t(zx—a)
g [ [ e
_ - ’Lt({L’ a - z (z—a
S B I TR | o [ e
= u({a}) +0
since
(+—a) 1 "0
. 1t r—a — _ 1
qlgrloo 5T /3: a/_ dtdp(z) = h_r)r;o 5T /R/_T e 1gqy(x)dtdp(x)
— il 68
Jin 5 [ 2710 @)duta) (69)
~ [ i @dnte) = ufa)
- 1t(:c a) — _ _ —
Th—r>I<1>o 5T /;éa/_ dtdu(zx) Th_I}nOo 5T / / cos(t(z — a)) + isin(t(z — a))dtdu(z)
= T]gnoo ﬁx — /ia sin(t(z — a))|Ly — icos(t(z — a))|Lpdu(x)
11 , .
= qlgnoo T oo /x#a sin(T(z — a)) —sin(-T'(x — a))
—i(cos(T(z — a)) — cos(—T(z — a)))du(z)
= T]gnoo %x i - /z#a sin(T'(z — a)) + sin(T'(z — a)) (69)

—i(cos(T(z — a)) — cos(T(x — a)))du(z)
.11 .
Jm / 25T =)o)
~ lim sin(T'(x — a)))
T Jpze T(r—a)

dp(w)

=0
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3.3.2

(ii) If P(X € hZ) = 1 where h > 0, then its ch.f. has ¢(2x/h +t) = ¢(t), so P(X =

w/h

LT /h e~ (t)dt
Note that I'm using y € hZ in place of the x € hZ that Durett uses for this question.

h 7/h ) w/h
o efzty(b() / 7Zty61tzd,u )d

2m —m/h —m/h
7/h
/ it(z—y) d,u
—7/h
7// =Y dbdp () by Fubini
T JRJ—7/h

2
h n/h h n/h

=_— / / T dtdp(x) + — / / e =Y didp(x)
T Je=y J—x/h 27 z#y J—m/h

/ / @Y dtdy(x) // MWL (2)dtdp(x)
z=y J—n/h 27T —m/h
w/h
// 1{y} dtdu()

h 2w
= 5e o [ L (@duta)

=pn({y}) =P(X =y)

o eite=y) cos(t(x — isin(t(z —
/:r¢y /w/h dtdy() /iy /W/h (t(z —y)) +isin(t(z —y))dtdp(z)
h T .
_h 1 /ﬁéy sin(t(x — y))L/ﬂh/h —icos(t(z —y))[™ ﬂ/h 1(z)

2rx —y
- / h 2sin(E(x — )
wty 2T T—y

T#Y

T x—y

dp()

x) =

(71)

If show (*) = 0 then the proof is complete. To see why it is zero, first note that sin(nw) = 0 for all n € Z;
second, note that y € hZ by assumption — this implies that y/h € Z; and third, note that P(X € hZ) =1 by

assumption. Therefore, 7 € Z and thus sin(ﬂ'%) =0.

(iii) If X =Y + b then Eexp(itX) = eitbEexp(itY). So if P(X € b+ hZ) = 1, the inversion formula

in (ii) is valid for x € b+ hZ.
bx(t) = €’y (t) and so

ho[mh
P(X =x)= Py _Tr/he_’“f’%)((t)dt
ho [T e
=5 _ﬂ/he ey (t)dt
x/h
_ % Tr//h e*“(x’b)(by(t)dt
—P(Y=x2—b)

CyruzMaz.com
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3.3.10

3.3.8

Use the last result to conclude that if X;, Xo,... are independent and have the Cauchy distri-
bution, then (X; + ... + X,,)/n has the same distribution as X;.

¢x.(t) = exp(—[t]) = ¢x, () = bx,(3) = exp(=|3]) = Gx1, | x0 () = exp(=[5])" = exp(—[t]) for iid X;;,
by theorem 3.3.2 O

3.3.9

Suppose X,, = X and X,, has a normal distribution with mean 0 and variance 02. Prove that
02 — o€ [0,0)

X, 5 X = ¢x, (t) = dx(t) forall t € R.

Since X,, ~ N(0,02), we have ¢x, (t) = exp(—0c2t?/2) for all n.

¢x, (0) =1 for all n, which implies that ¢x(0) = 1. And also, ¢x, (t) < 1 for all ¢,n, which implies that
dx(t) <1 for all ¢.

By theorem 3.3.1, ¢x(t) is uniformly continuous. Therefore for all € > 0 there exists 6 > 0 such that
lpx (r) — ¢x(r)| < € whenever |r — s| < 4.

Set € = 1/2 and r = 0, then by uniform continuity and the fact that ¢x(0) = 1, we have |1 — ¢x(s)] < 1/2.
A little manipulation gives 1 — ¢x(s) < |1 — ¢x(s)| < 1/2=1/2 < ¢x(s) for s € (=9, ).

Note that 02 = —Zlog(¢x,(t)) for all ¢t # 0 € R. And by continuity of logarithm and the fact that
¢x,(t) = dx(t), we have —Z log(¢x,, (1)) — — % log(dx (1))

Fix t = s* € (0, s), then 1/2 < ¢ x(s*) < 1.
then o2 = —532 log(¢x, (s*)) — —S% log(dx(s*)) = o2

02 € [0,00) because 1/2 < ¢x(s*) < 1. 0

3.3.10

Show that if X,, and Y,, are independent for 1 <n < o0, X,, = X, and Y,, = Y, then X,,+Y,, =
Xoo + Y

Since X,, and Y, are independent, we have

x4, (1) = Ox, (D) by, (t) = dx. (t)Py., (1) = dxotva. (t) U

CyruzMaz.com 14



3.3.26

3.3.13

Let X1, X, ... be independent taking values 0 and 1 with probability 1/2 each. X = Zj>1 Xj/3j
has the Cantor distribution. Compute the ch.f. ¢ of X and notice that ¢ has the same value
at t = 3%r for k=1,2,3, ...

d)X«; (t) = % + %eit

ox(t) = H;il ¢ﬁ(t) = Hj’;l B + %ewt/gﬂ}

37

w
B
2
I
—1¢
-
Kol
w
B
a)

H
w‘
<|

ox(

<.
Il

F + 1&2(3’%)/?&}
2

=t

| 2
j=1
o) 1 1 i2w3k—J
=I1[5+ 5]

<
Il
—

1 1 : 1 .
{f + 3 cos(2m3% 77 + 25 sin(27r3k_7)}

=T

=12
rrrlo 1 1 rrrlo 1 1 r
— k—j . : k—j k—ij . . k—i
= H b + 3 cos(2m3"77) + i3 sin(273 ])} H b + 3 cos(2m3"77) + i3 sin(273%77)
i<k ji>k
o T ! 1
_ (orak—iy 4 L k—j %
_H _1+O]H[§—|—§c05(2ﬂ'3 7)—|—z251n(27r3 3)} (*)
i<k >k
oo
rl 1 . 1 )
=T1[5 + 5 eost2ms) 45 sin(27r3ﬂ)}
7>0
_ rrrl, 1 it3~d
=115 +3 }
j=1
which does not depend on k.
Note that (*) holds because for all j < k, cos(273*77) = 1 and sin(273%~7) = 0. O

3.3.23

If X1, X5, ... are independent and have characteristic function exzp(—[t|*) then (X; +...4+ X,,)/n!/®
has the same distribution as X;.

ox, (1) = exp(—[t]*) = ¢_x;, (1) = exp(—|E=[*) = exp(—1) = 6, , | x, () = [exp(-15)]" =

nl/e nl/a nl/e

exp(—[t|*) = éx, (1) O

3.3.26

Show that if X and Y are independent and X +Y and X have the same distribution then Y =0
a.s.

Px+y () = ox (t)¢y (t) = ox (1)
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5.1.7

= ¢x(t)(1 — ¢y (t)) =0 for all t. So either ¢px(t) =0 or (1 — ¢y (¢)) =0 for all ¢.
Since, by definition, ¢x (0) = 1, it follows that ¢x(t) # 0 for all ¢, and therefore, ¢y (t) = 1 for all ¢.

by (t) = 1 = limy, o 220y O1FOv (Zh) iy, (12241 — 0 = E|Y|? < oo by theorem 3.3.9.

Then we apply theorem 3.3.8 (since E|Y|? < o0) to get ¢y (t) = 1 +itEY — t?E(Y?)/2 + o(t?). But since we
know that ¢x (0) = 1, it follows that EY = 0 and E(Y?). Therefore Y = 0 a.s. O

5.1.3

Prove Chebyshev’s inquality. If a>0 then P(|X| > |F) < a 2E(X?|F)
Note that x>0 = L1x)/a>1 = 1x2/a2>1 < XQ/GQ. Thus,

P(X > a|F) = E1)x|>al|F]

= E[lXZ/azzl‘]:]
< BIX?/a?|F] (%)
=a 2E[X?|F]

O

5.1.4

Suppose X >0 and FX = co. Show that there exists a unique F-measurable Y with 0 <Y < o0

such that for all A € F we have
/ XdP = / YdP
A A

Hint: Let X, = X AM,Y) = E(XM|.F), and let M — oo

We will use the hint and let X3, = X A MYy = E(X | F). Note that Xy 1+ X as M — oo and therefore
Yy 1 to some limit. Let Y = limps o0 Yar.

By the definition of conditional expectation, we have

/X/\Msz/YMdP forall Ae F
A A

Taking the limit as M — oo and applying MCT to both sides of the equation (since X T X and Yy 1Y)
we get

M—o0 M—oo [ 4 —00

/XdP:/ lim X A MdP = lim X ANMdP = lim YMdP:/ lim YMdP:/YdP
]

5.1.7

Show that when E|X|, E|Y|, and E|XY| are finite, each statement implies the next one and
give examples with XY € {-1,0,1} a.s. that show the reverse implications are false: (i) X and
Y are independent, (ii) F(Y|X) = EY , (iii) F(XY) = EXEY.

First note that E(Y|X) = E(Y]o(X))
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5.1.9

(i) = (i)
Let A € 0(X). Then by the definition of conditional expectation we have [, YdP = [, E(Y|o(X))dP
Then [, YdP = E[Y14] = EYE1, = [, EYdP, where the second equality follows from independence.
Example to demonstrate the converse is false:

Let X,Y € {—1,0,1} with the following joint distribution:

X/Y[-1 |0 1
110 0.25 | 0
0 0.25 | 0 0.25
1 0 0.25 | 0

Then, P(X =0,Y =0) =0#1/4=1/2x1/2 = P(X = 0)P(Y = 0). Therefore X and Y are not
independent.

(i) = (iii)

CLAIM: E[E(Z|G) = EZ
PROOF: By the second property of conditional expectation, for all A € G, fA ZdP = fA E(Z|G)dP.
Let A=Q, and we get EZ = [, ZdP = [, E(Z|G)dP = E[E(Z|G)]

By theorem 5.1.7, if X € F and E|Y|, and E|XY]| are finite, then F(XY|F) = XE(Y|F)

X € o(X) and the expectations are finite, so E(XY|o(X)) = XE(Y|o(X)) = XEY, where the second
equality follows from (ii). Then taking expectation of left and right sides of the equality we get: LHS:
E(XY)=E[E(XY|o(X))] and RHS: E[XEY] = EXEY

Example to demonstrate the converse is false:

Let X € {—1,0,1} and X € {—1,1} with the following joint distribution:

XY 1 |1
1 |0 |02
0 050
1 0 |025

Then EXY =0=EXEY but EY|X=-1)=1#0=FEY

]
5.1.9
Let var(X|F) = E(X?|F) — E(X|F)2. Show that var(X) = E(var(X|F)) + var(E(X|F))
E(var(X|F)) = E[E(X?|F) - B(X|F)?] = E[E(X?|F)] - E[E(X|F)’] (76)
= E[X?] - B[B(X|F)?
var(B(X|7)) = B[E(X|FY?] - BB(X PP -

Then,
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5.1.12

E(var(X|F)) +var(E(X|F)) = E[X?] — B[E(X|F)?| + E[E(X|F)? — E[X]?
= E[X?] — E[X]? (78)
= var(X)

5.1.11

Show that if X and Y are random variables with E(Y|G) = X and FY? = EX? < oo, then X =Y
a.s.

By theorem 5.1.7, if X € G and E|Y|, E|XY| < co then E(XY|G) = XE(Y|G)

Note that X = E(Y|G) € G by definition of conditional expectation. And (EXY)? < EX?EY? < co by the
Cauchy-Schwarz inequality and the assumption of the question. Therefore, we can apply the theorem to get
E(XY|G) = XE(Y|G). Taking expectation on both sides gives:

E[E(XY|9)] = EIXE(Y|G)]

_ X7 (79)
Then
E(X -Y)?=E(X?) - 2E(XY)+ E(Y?)
= E(X?) - 2E(X?) + E(Y?) (80)

E
E(X?) - 2E(X?) + E(X?)
0

Then by Markov’s inequality we have for all e >0 P(|X — Y| >¢) < E(Xeijy)z = 0. Therefore X =Y a.s.

5.1.12

The result in the last exercise implies that if EY? < co and E(Y|G) has the same distribution
as Y, then E(Y|G) =Y a.s. Prove this under the assumption F|Y| < co. Hint: The trick is to
prove that sgn(X) =sgn(E(X|G)) a.s. and then take X =Y — ¢ to get the desired result.

Suppose X is a random variable with F|X| < oo such that X < E(X|G). Let A = {w : X(w) > 0},
B ={w: E(X|9)(w) > 0}.

By the definition of conditional expectation we have [, XdP = [, E(X|G)dP.

And since X £ E(X|G), we have |z E(X|G)dP = [, XdP. Therefore [, XdP = [, XdP.

Furthermore,

XdP+/ XdP:/XdP
ANB ANBC A
:/ Xdp (81)
B
= XdP+/ XdP
ACNB

ANB
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5.4.7

which implies that [, po XdP = [,cp XdP

Note that X(ANBY) > 0 and X(A° N B) < 0. Therefore, both integrals above are =0, and hence
{X > 0,E(X|G) <0} = AN B = ¢. Since X £ E(X|G) it follows that {E(X|G) > 0,X < 0} = ¢ also.
Thus sgn(X) = sgn(E(X|G)) a.s.

Now suppose that Y is a random variable such that E|Y| < oo such that X 4 E(Y|G). Let X =Y —c. By
the above arguments, we have that {Y —¢ > 0, E(Y —¢|G) <0} ={E(Y —¢|G) > 0,Y —c <0} = ¢ or
equivalently {Y > ¢, E(Y|G) < ¢} = {E(Y|G) > ¢,Y < ¢} = ¢.

Since Q is dense in R we have that

Y #EY|a)} = ({Y >, B(Y|G) <} U{E(Y|G) > ¢, Y < c}) -
ceQ

Therefore E(Y|G) =Y a.s. as desired O

#5.3.2. ##4# Give an example of a martingale X, with sup,, |X,| < 1 and P(X,, = ai.0.) =1 fora = —1,0,1.
This example shows that it is not enough to have sup | X,,+1 — X,,| < oo in Theorem 5.3.1.

Let U; “ Uniform(0,1), i € N.
If X,, =0 thenlet X, 11 =1if Uyy1 >1/2,and X,,41 = —-1if U,q1 < 1/2.
If X,, # 0 then let X, .1 = 0if U,1 > 1/n?, and X,,11 = n?X,, if U,y1 < 1/n%

>~1/n? < oo so by the Borel Cantelli lemma we evenentually just go from 0 to +1 and then back to 0 again,
so sup | X, | < oo.

5.4.7

Let X,, and Y,, be martingales with EX?2 < co and EY,? < oco.

EX,Y, - EXoYo =Y E(Xm — Xm1)(Ym = Y1)

m=1
Note that

E(Xm - Xm—l)(Ym - Ym—l) = E[(Xm - Xm—l)Ym] - E[(Xm - m—l)Ym—l)]

82
=FEXY, —EXp 1Yy, — EXp Y1 + EXp 1Y ( )

By theorem 5.4.6 (orthogonality of martingale increments) we have that E[(X,, — Xyn—1)Ym—1] = 0 Then we
have

E[(Xm — mel)ymfl] =0= E[mem — melymfl] =0=EX,)Yy_ 1=FEX,,_1Ym_1

and similarly
EYnXmo1 =EXp 1Y

Substituting these into (1) and summing from m = 1 to n we have
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5.4.7

n

> BE(Xp = X)) (Yo — Y1) = > E[(Xn = Xino1)Vim] = E[(Xn — Xine1)Yino1)]

m=1

= EXuYm — EXp1Ym — EXp Y1+ EXoo1Yin
m=1

i 83
= EXnYm — EXm1Ymo1 = EXio1 Yoot + EXpo1 Yoo =
m=1
= Z EXy Yy —EXp 1Y
m=1
— EX,Y, — EX,Y,
(The last equality follows by telescoping the sum) a
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5.4.10

5.4.8

Let X,,,n >0 be a martingale and let ¢, = X,, — X,,_; for n > 0. Show that if EX2, Z:Zl £ <o
for n > 1 then X,, > X, a.s. and in L?

In the previous exercise, let X =Y and note that
n n
Z Egn = Z E(Xm - )(m—l)2
m=1 m=1

= Xn: E(Xm - Xm—l)(Xm - Xm—l) (84)
m=1

= FEX, X, — EXoXo
= EX? - EX?

Rearranging (3) and using that EXZ, Y _ €% < oo we get EX2 =EXZ + Y " _ &% < .

Thus sup EX?2 < oo, and so X,, — X a.s. and in L? by theorem 5.4.5 (LP convergence theorem). g

5.4.10

Let &,&,... be i.i.d. with E¢, =0 and FE¢? < co. Let S, = & + ... +&,. Theorem 5.4.1 implies
that for any stopping time $N, ESy» = 0. Use Theorem 5.4.12 to conclude that if EN'/? < oo
then ESy = 0.

Sy, is a martingale.
By theorem 5.2.6, for any stopping time N, and martingale S,,, Syan is a martingale.
Note that EN'/2 < 0o = N2 < 00 a.s. = N < 00 a.s.

Furthermore, ESyan,=0, because {NAn = n} € F, for all n so N An is a stopping time, and, P(NAn <n) =1
so by theorem 5.4.1, we have 0 = ESy = ESyan = ES, =0.
S — Sm—1, if N>m

Also, note that Syam — SNAm—1 = .
0, otherwise

and A, = 37 E((Svam = Svam-1)2Fn-1) = Lot B4 Fom1) = 00 BE, < o0
by the assumptions of independence and finiteness of second moments of ;’s.

Letting n — 0o, we have that A, < oo since N < oo a.s..

Now by theorem 5.4.12; we have E(sup [Syan|) < 3EAY? < .

Finally, since i. [Snyan| < sup|Snan| for all n, and ii. E(sup |Syan|) < 00, and iii. ESyan = 0, we can use
the dominated convergence theorem to get

ESN = E( lim SN/\n) = lim E(SN/\n) =1lim0=0 O
n—00 n—00 n—00
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5.5.5

5.5.2

Let 7y, Z,,... be i.i.d. with F|Z;| < oo, let § be an independent r.v. with finite mean, and let
Yi = Z; + 6. If Z; is normal(0,1) then in statistical terms we have a sample from a normal
population with variance 1 and unknown mean. The distribution of 6 is called the prior
distribution, and P(6 € u|Y3,...,Y,) is called the posterior distribution after n observations.
Show that F(0|Yy,...,Y,) — 0 a.s.

Let F, = o0(Y1,...,Y,) and Foo = o(U,, Frn)-Then
E(G‘fn) = E(9|foo) =0

where the a.s. convergence on the left is due to theorem 5.5.7, and the equality on the right is due to the fact
that 6 € F, which is a consequence of the strong law of large numbers as follows:

Y1++Yn Z1++Zn a.s.
—_ = — 5
n n

O+EZ; =040

5.5.5

Let X, be a r.v’s taking values in [0,00). Let D = {X,, = Ofor some n > 1} and assume that
P(D|X1,...,X,) > d(z) >0 on {X,, <z}. Use theorem 5.5.8 to conclude that

P(DU{ILan:oo})zl

By theorem 5.5.8, if F,, 1 Foo and A € F, then E(14|F,) — 14
Let Fp, = 0(X1,..., Xp) and Foo = 0(U,, Fn).- Then D € F.
Let B ={w: lim X, (w) # oo}. Note that P(B U B¢) = 1.

n— o0

Let By = {w : liminfX, (w) < M} for M € N. Note that B = J,,; Bum,
n— oo
Fix some M € N, and note that for all w € By, we have X, (w) < M + 1 infinitely often.
In other words, By C {w: X, (w) < M +1io0.}.
Then by theorem 5.5.8, we have
0<dé(M+1) <P(D|Xy,..,X,) =P(D|F,) = E(1p|F,) — 1p (85)

which implies that By C {w : X, (w) < M +11i.0.} C D (because 0 < E(1p|Fx) € {0,1})
Since Bys C D, and B = UM By, we have B C D, and it follows that

1>P(DU{lim X,, =oc}) = P(DUB®) > P(BUB®) =1
n—oo

which gives the desired result. O
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5.7.2

5.7.2

Let S, be an asymmetric simple random walk with 1/2 < p < 1, and let ¢ = pg. Use the fact

that X,, = (S, — (p — ¢)n)? — 0?n is a martingale to show var(T,) = bo?/(p — q)°.

Since X,, = (S, — (p — q@)n)? — o?n is a martingale, and T} = inf{n : S,, = b} is a stopping time, it follows by
theorem 5.2.6 that X7, nn = (Syan — (p — ¢)(Th An))? — 02(Ty, An) is also a martingale.

Since X1,00 = Xo = (So — (p — ¢)0)?> — 020 = 0, and (T, An) is a bounded stopping time, it follows by
theorem 5.4.1 that

EXt,n0 = EX1oan = E[(Styan — (p— @)(Th An))? — 0*(T, An)] =0
Then we have

E[(Stynn — (p — @)(Ty An))?] = E[o*(T, An)]

Using Fatou’s lemma (since (St,an — (p — q)(Tp An))? > 0), and bounded convergence theorem since (T}, A n
is bounded) we have

Bl(b—(p— a)Ty)’] = E[ lim (Sz,0n — (p — 0)(Th An))?)

= Eflim inf(S7,nn — (p — ¢)(Ty A n))?|
< HminfB[(Sz,an — (p = ¢)(Th A 1))

) (86)
= liminfE[o* (T A n))
n— oo
— 1 2
= nh_}n;oE[a (Ty An))
= E[lim 6*(Ty An)] = 0?ET, = b/(2p — 1) < 00
n—oo
Thus ET? < b/(2p — 1) < co. Then,
0=EX7nn = E[(Styan — (p — )(Ty An))? — (T, An)] (87)

= E[S7an — 251,nn(p — @)(Th An) + (p — )* (T, An)® — 0*(T}, An)

Note that Sz,an? < b> < 00. Moreover, E[T, An] < E[Ty] = b/(2p — 1) < oo by theorem 5.7.7 (d). And
1/2
ESt,an(Ty An) [ (7, An) E[(Ty A n)?] < oo by the Cauchy-Schwarz inequality and (5).

Thus we can apply dominated convergence theorem to (6) to get

0= lim B[St,nn — (p — q)(Ty An))* — o*(Ty An)]
= lim B[ST, n, — 281,nn(p — 0)(Th An) + (p = )*(Th An)?* — 0*(T} An)]
= E lim [S7, \, = 281,70 (p — 0)(Ty An) + (p — 0)*(Ty An)® — 0* (T A )]
= E[b* = 2b(p — )Ty + (p — 9)°T — 0°T))] (88)

=b*=2b(p — q)b/(2p = 1) + (» — ¢)*ET; — o°b/(2p — 1)

=b*—=2b(p— @)b/(p— q) + (p — )’ BT} — %b/(p — q)

= —b>+(p—q)*ET; —a*b/(p - q)

Rearranging (7) gives ET7? = % =a%/(p—q)® +b*/(p — q)*
Finally, using the fact that (p — ¢) = 2p — 1 and E[Tp] = b/(2p — 1) (theorem 5.7.7 d), we get the desired
result:

Var(Ty) = E[T¢] — E[T,)* = 0®b/(p — q)° + b*/(p — ¢)* = b*/(2p — 1)* = 0?b/(p — q)°® 0
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