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Abstract

We introduce a new neural network architecture called the Partial Bayesian Neural

Network, which, in essence, is a hybrid of Bayesian and non-Bayesian neural

networks. A Bayesian neural network applies the Bayesian paradigm to all the

weights of a neural network, whereas the partial Bayesian neural network randomly

designates a proportion of the network’s weights to be Bayesian, and the rest to

be non-Bayesian; this proportion is treated as a hyper-parameter of the model.

A partial Bayesian neural network reduces the dimensionality of the posterior

in comparison to a Bayesian neural network, and we found that ensembles of

partial Bayesian neural networks can approximate Bayesian neural networks quite

accurately.

1 Introduction

1.1 The BNN

Bayesian neural networks (BNNs) have been widely studied, and proven to be powerful tools. The

main advantage of a BNN over a non-Bayesian neural network (NN) is that it accounts for uncertainty

of the weights and hence the predictions it produces. It does so by treating the weights of the

network as distributions, rather than single points. It then imposes a prior distribution on the weights,

conditions on data, and arrives at a posterior distribution for the weights.

However, BNNs come at a cost: optimizing a BNN and deriving the posterior distribution of the

weights is computationally expensive, and often even an intractable problem depending on the size

of the network, choice of priors, and distributional assumptions on the data. Even in the simplest

regression settings, approximating the posterior is an expensive endeavour.

1.2 The PBNN

The Partial-Bayesian neural network (PBNN) strives to give performance comparable to the BNN

but at a lower computational cost. The PBNN designates only some of the network’s weights to



be distributional and the rest to be single points. In other words, only some of the weights are

Bayesian. The proportion of the weights that are Bayesian is a hyper-parameter, allowing the

network’s "Bayesian-ness" to be adjustable.

1.3 The PBNN Ensemble

Given that the Bayesian/non-Bayesian weight designation process of the PBNN is entirely random,

high model variance is a valid concern. To mitigate the potentially high model variance, we use an

ensemble of PBNNs to make predictions. In other words, we train multiple PBNNs individually on

the same data set, and average their predictions.

2 Figures

(a) Conventional Architecture (b) Random BNN

Figure 1: BNN vs. PBNN technique.

Figure 1 shows a conventional BNN next to a PBNN. The architecture shown here is arbitrary, and

the main take away is that the weights (implied by the connections) have priors (implied by the

circles) on them. In figure 1(a) all the weights have priors on them. This is typical for a BNN,

although in some architectures all the weights of only certain layers have priors on them. What we

are proposing is the architecture for figure 1(b). Instead of all the weights having priors on them,

we will randomly select a subset of a fixed number of weights to have priors on them, while the

remainder are single-point parameters and then generate predictions using that model. This will be

repeated, and then the predictions will be averaged.

3 Formal Description

We explore the PBNN in the context of regression as regression motivates much of the statistical

theory and machine-learning advances to date. Before delving into the details of PBNNs, a quick

review of NNs and BNNs is in order. But first, we must establish some notation.
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3.1 Notation

Training Data: D = (Xi, Yi), i = 1, ..., n. The Xi’s are the vectors explanatory variables. Yi’s are

the response variables. Xi ∈ X , Yi ∈ Y , where X is the space of the explanatory variable(s), and Y
is the response space.

Network Weights: W = w ∪ wB . Where w denotes the set of non-Bayesian weights, and wB

denotes the set of Bayesian weights.

Optimal non-Bayesian weights: w∗. The set of non-Bayesian weights that optimize some cost

function, J

Neural Network Function: n : X → Y n represents a neural network as a function that maps the

predictor space to the response space. n is parameterized by a set of weights, W. Depending on

context we may or may not specify the parameterization when referring to n. But the output of n is

always a prediction based on the input. n(X) = n(X,W) = Ŷ .

Prior Distribution of the Weights: P (W)

Conditional Distribution of the Data Given Weights: P (D|W)

Posterior Distribution of the Weights Given the Data: P (W|D)

3.2 NN

A typical neural network is a composed of layers and each layer is further composed of neurons. The

first layer has the same dimension as X , and the last layer has the same dimension as Y . Any layer in

between the first and last layer is known as a hidden layer, and the neurons in the hidden layers are

known as hidden units. A neural network can have any number of hidden layers, and each hidden

layer may have any number of hidden units.

Note that since the NN has no Bayesian weights, we have that W = w (because wB = ∅).

The typical neural network for regression assumes a Gaussian distribution for the response, i.e.

P (Y |X,w) ∼ N . Note that the parameterization of P (Y |X,w) is non-trivial as it is a composite

function of w, and all the X’s. In this setting, w∗ can be calculated by Maximum Likelihood. We

may set

w∗ = wMLE = argmax
w

logP (D|w)

Then to make a prediction, given some X̂ , we let Ŷ = n(X̂,w∗)

3.3 BNN

If we impose priors on the weights, P (W), assume some distribution for the data conditional on

the weights, P (D|W), derive the posterior distribution of P (W|D) then our network can be (fully)

Bayesian.

Note that since the BNN has no non-Bayesian weights, we have that W = wB (because w = ∅).
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In this scenario, given some X̂ , we let the prediction be the expectation of the neural network over

the probability measure of the posterior distribution of the weights, i.e. P (wB |D):

Ŷ = EwB |D
[
n(X̂,wB)

]
(1)

Note that wB can have very high dimensionality, and thus P (wB |D) may be too expensive if not

downright impossible to calculate.

3.4 PBNN

The PBNN sets some of the weights to be Bayesian and the rest to be non-Bayesian. In other words,

W = w ∪ wB , and both w and wB are non-empty. Just as in the BNN, the predictions are still the

expectation of the neural network over the probability measure of the posterior distribution of the

Bayesian weights; however, in the PBNN, the posterior is conditioned on D as well as w∗ (i.e. the

optimal non-Bayesian weights).

Ŷ = EwB |D,w∗
[
n(X̂,wB ,w∗)

]
(2)

The PBNN combines the BNN and NN into a hybrid network whose "Bayesian-ness" (i.e. |w
B |
|W| is

adjustable.)

4 Related Work and Bibliography

4.1 Weight Uncertaintly in Neural Networks

Our work builds on the work done by Blundell, et al. (2015) from Google DeepMind in their

paper ’Weight Uncertainty in Neural Networks’. This paper focused on training neural networks

where the weights had probability distributions. Blundell, et al. propose using a combination of

variational inference, the reparameterization technique, and Monte-Carlo sampling to find an optimal

approximation to the posterior. They call their methodology Bayes by Backprop. We use some of the

same ideas as Blundell, et al., but we modified them to work in situations where only a portion of the

parameters are Bayesian.

Specifically, Blundell, et al. makes predictions to approximate (1), whereas our predictions approxi-

mate (2). In the former, w is empty whereas in our model, both wB and w are non-empty.

Blundell, et al. approximate the posterior of wB |D through variational inference as follows:

θ∗ = argmin
θ

KL
[
q(wB |D,θ)||P (wB |D)

]
(3)

where q(wB |D,θ) is the approximate posterior, and θ parameterizes q. On the other hand, in

addition to approximating the posterior of wB |D through variational inference, we find the optimal

non-Bayesian weights w∗. That is, we find w∗ and θ∗ such that:

θ∗ = argmin
θ

KL
[
q(wB |D,w∗,θ)||P (wB |D,w∗)

]
(4)

w∗ = argmin
w

EwB |D,w
[
J (w ∪ wB)] (5)
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for some cost function J .

Lastly, after finding θ∗, Blundell, et al. makes predictions by approximating

Ŷ = Eq(W|D,θ∗)

[
n(X̂,w)

]
(6)

using Monte-Carlo. On the other hand, we make predictions using an ensemble of M PBNNs.

Specifically, our predictions are of the following form:

Ŷ =
1

M

M∑
m=1

Eq(wB
(m)
|D,θ∗

(m)
,w∗

(m)
)

[
n(X̂,wB(m) ∪ w∗(m))

]
(7)

where wB(m) is the set of randomly designated Bayesian weights in the m-th PBNN in the ensemble.

For each ensemble, the proportion of wB to w is predetermined as a hyperparameter.

4.2 Other related works

Blei et al. (2017) give a detailed review of variational inference. We found Blei et al’s paper

illuminating in approximating the posterior of the weights in both BNNs using equation (3) and

adapting the methodology to PBNNs.

Kingma et al. (2013) outlines the reparameterization trick and more in their paper, ’Auto-Encoding

Variational Bayes’. This paper goes into detail about applying the reparameterization trick to

approximate the gradient using Monte-Carlo sampling in order to find θ∗.

5 Comparison and Demonstrations

5.1 Fitting a PBNN: Partial-Bayes by Backprop

Fitting a PBNN has the added challenge of optimizing w (i.e. the non-Bayesian weights). This may

seem like a daunting task at first, but under certain assumptions this is in fact not much different than

Bayes by Backprop as outlined by Blundell, et al.

Let q(wB |D,w,θ) be the approximate posterior distribution of wB |D,w as parameterized by θ. We

will assume a distributional family for q(wB |D,θ) and choose a θ∗ that minimizes the Kullback-

Leibler divergence between the approximate posterior and the true posterior. Then

θ∗ = argmin
θ

KL
[
q(wB |D,w,θ)||P (wB |D,w)

]
(8)

= argmin
θ

∫
q(wB |D,w,θ) log q(w

B |D,w,θ)
P (wB |D,w)

dw (9)

= argmin
θ

Eq
[
log q(wB |D,w,θ)− log

[
P (wB)P (D|w∗ ∪ wB)

]]
(10)

Typically, for variational inference we would use the reparameterization trick and find an optimal

θ that allows us to approximate the posterior. Then, to make predictions for a new X̂ , we would

sample from q(w|θ) to obtain a Monte-Carlo estimate of Ŷ as in (6). On the other hand, we have the
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added complication of having non-Bayesian weights, w which also need to be optimized. Using the

properites of the logarithm, equation (10) can be re-written as:

θ∗ = argmin
θ

Eq
[
log q(wB |D,w,θ)− logP (wB)− logP (D|w∗ ∪ wB)

]]
(11)

Note that since we approximate the posterior with q:

w∗ = argmin
w

EwB |D,w
[
J (w|D,wB)] (12)

≈ argmin
w

Eq(wB |D,w,θ∗)

[
J (w|D,wB)] (13)

for some cost function J . We assume a distributional family for q such that the reparameterization

trick (see appendix for details) is feasible. Additionally, we specify the cost function to be the negative

log-likelihood. Lastly, we assume that the approximate posterior q is such that wB is independent of

w (i.e.

q(wB |D,w,θ∗) = q(wB |D,θ∗)). Then our problem boils down to:

w∗ = argmin
w

Eq(wB |D,w,θ∗)

[
J (w|D,wB)] (14)

= argmin
w

Eq(wB |D,θ∗)

[
− logP (D|w ∪ wB)

]
(15)

= argmin
w

Eq(wB |D,θ∗)

[
− logP (D|w ∪ wB)− logP (wB) + log q(wB |D,θ∗)] (16)

Under the assumptions on our cost function and approximate posterior, we have that the objective in

(16) is identical to the objective in equation (11). This implies that:

θ∗,w∗ = argmin
θ,w

Eq(wB |D,θ)
[
− logP (D|w ∪ wB)− logP (wB) + log q(wB |D,θ)] (17)

This implies that we can optimize our non-Bayesian weights alongside the variational inference

parameterization θ∗. Thus, in order to optimize θ, we can still use the reparameterization trick.

Letting f(wB ,w,θ) = − logP (D|w ∪ wB)− logP (wB) + log q(wB |D,θ), and wB = t(θ, ε),

where ε ∼ κ(ε) we will have all the ingredients we need to apply to reparameterization technique

(see appendix). We can estimate the gradient using Monte-Carlo sampling as follows:

∇w,θEq
[
f(wB ,w,θ] = Eκ

[
∇w,θf(t(θ, ε),w,θ)] (18)

≈ 1

M

M∑
n=1

∇w,θf(t(θ, ε
(i)),w,θ), where ε(i) ∼ κ(ε)(i.i.d). (19)

where M is the total number of Monte Carlo samples, and ε(i) indicates the i-th Monte Carlo sample

from κ(ε). We then use gradient descent to optimize with respect to w and θ. That is:

[
w(p),θ(p)]← [w(p−1),θ(p−1)]− α 1

M

M∑
n=1

∇w,θf(t(θ
(p−1), ε(i)),w(p−1),θ(p−1)) (20)

This is analogous to the fitting method from the (fully) Bayesian counterpart. The only difference is

that we are optimizing for w in addition to θ, but remarkably we can use the same technique.
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5.2 Experiment

5.2.1 Set up

In order to investigate the merit of our model, we regress on toy data. The model used has a single

input, 2 hidden layers with 40 hidden units in each, and a single output. The architecture is shown in

figure 2. The network is fully connected, with biases which leads to a total of 1761 weights.

Figure 2: Architecture of models used for tbe experiments.

Six different generated data sets were used to train and test the model. The functions were:

f1(x) = x+ γ (21)

f2(x) =
x2

10
+ γ (22)

f3(x) = 3 sin(x) + x+ γ (23)

f4(x) = 3 log(x2) + γ (24)

f5(x) = 6 sin(
x2

15
) + 6 cos(

x2

15
) + γ (25)

f6(x) =
x2

10
sin(

x2

20
+ x) +

x

20
+ cos(x) + γ (26)

where γ ∼ N (0, σ = 0.5) is a noise term. We sampled 40 data points on the x interval [-15,15]

from the equations above. For each of the six generated data sets, we fitted one BNN, one NN, and

ensembles of 10%, 25% and 50% PBNNs, with 10, 6, and 3 PBNNs in each ensemble, respectively.

We used a learning rate of α = 0.005 for all models, with N = 600 iterations of gradient descent

with Adam for all functions except f5, which we iterated 1000 times.

We also imposed a diagonal Gaussian prior on the Bayesian weights: P (wB) = N (0, exp(−5)I) for

mathematical convenience. Furthermore, we used a diagonal Gaussian as the approximate posterior,

q(wB |θ) in order to apply the reparameterization trick.
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5.2.2 Results

The results from fitting all the models were quite positive. Figure 3 shows four of the 10 PBNNs in

the 10% ensemble for function 3. From figure 3 it is clear that they all fit the data quite well, but in

slightly different ways. The differences between the fits are due to i) the randomness involved in

the Bayesian/non-Bayesian weight designation, and ii) the natural variation that comes from Monte

Carlo sampling used for approximating the expectation in (7).

Figure 3: Members of the 10% PBNN ensemble, fitted on data generated from function 3.

Figure 4 shows the fitted models for the non-Bayesian NN, the BNN, as well as the 10%, 25%, and

50% ensembles for all six functions. Figure 4 illustrates how well the PBNN ensembles approximate

the (full) BNN. With some exceptions, the fitted ensemble models appear to resemble the BNN more

than the non-Bayesian NN. In general, it appears that the higher the proportion of Bayesian weights,

the more the ensemble predictions resembles the BNN predictions. That being said, even the 10%

PBNN ensemble does a good job of emulating the BNN, especially when interpolating.
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Figure 4: Fitted models vs. actual data and training observations. Top left: f1, Top right: f2, Middle

left: f3, Middle right: f4, Bottom left: f5, Bottom right: f6

6 Limitations

There are three main limitations of our work: i) it was tested only on relatively simple models, ii)

the prior on the Bayesian weights was diagonal Gaussian, and iii) the analysis done was largely

qualitative.

Since it was only tested on simple models, there is no guarantee that it will scale well to more

complicated problems. Having multidimensional inputs, sequential inputs, multiple outputs, or

anything that increases the complexity of the model is not guaranteed to yield the same quality of

results. The second limitation is the choice of prior. We used a diagonal Gaussian, which makes

the Bayesian weights independent of each other as well as the non-Bayesian weights. Using a more

complicated prior, or one that has the non-Bayesian weights as a parameter could lead to much more

tedious calculations. Lastly, the analysis we did was qualitative, and a quantitative measure of how

well the ensembles emulate the BNN may provide some key insights. Beyond those three limitations,

the performance of the ensembles appear to be impressive, and estimate the BNN rather well.
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7 Conclusion

When going about a regression problem, PBNN ensembles are a sound option. Specifying an appro-

priate cost function, and using a convenient approximate posterior make model training manageable.

In fact, under these conditions training a neural-network with both Bayesian and non-Bayesian

weights is nearly identical to training a fully Bayesian neural network, with the added advantage of

having much lower posterior dimensionality. The performance of the PBNN ensembles were not

exceptionally different from that of the BNN, which is suggestive of potential for the PBNN ensemble

as a means to approximate BNNs.
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9 Appendix

9.1 The Reparameterization Trick

For a random variable, w, if (i) w = t(θ, ε) where ε is a random variable with density κ(ε) and t(θ, ε)

is a deterministic function, and (ii) w has density q(w|θ) such that κ(ε)dε = q(w|θ)dw then for a

function f(w, θ) = f(t(θ, ε), θ) we have:

∂

∂θ
Eq[f(w, θ)] = Eκ[

∂

∂θ
f(t(θ, ε), θ)] (27)

= Eκ
[∂f(t(θ, ε), θ)

∂t

∂t(θ, ε)

∂θ
+
∂f(t(θ, ε), θ)

∂θ

]
(28)
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